Solveeit Logo

Question

Question: $\int \frac{\sqrt{x^{2021}}}{1-x^{2023}}dx$...

x20211x2023dx\int \frac{\sqrt{x^{2021}}}{1-x^{2023}}dx

Answer

12023ln1+x2023/21x2023/2+C\frac{1}{2023} \ln \left| \frac{1+x^{2023/2}}{1-x^{2023/2}} \right| + C

Explanation

Solution

To solve the integral I=x20211x2023dxI = \int \frac{\sqrt{x^{2021}}}{1-x^{2023}}dx, we use a substitution. Let u=x2023u = x^{2023}. Then du=2023x2022dxdu = 2023 x^{2022} dx, which implies dx=du2023x2022=du2023u2022/2023dx = \frac{du}{2023 x^{2022}} = \frac{du}{2023 u^{2022/2023}}. The numerator is x2021=x2021/2\sqrt{x^{2021}} = x^{2021/2}. Since x=u1/2023x = u^{1/2023}, we have x2021/2=(u1/2023)2021/2=u2021/4046x^{2021/2} = (u^{1/2023})^{2021/2} = u^{2021/4046}. Substituting these into the integral: I=u2021/40461udu2023u2022/2023=12023u2021/40461uu2022/2023duI = \int \frac{u^{2021/4046}}{1-u} \cdot \frac{du}{2023 u^{2022/2023}} = \frac{1}{2023} \int \frac{u^{2021/4046}}{1-u} u^{-2022/2023} du. The exponent of uu simplifies to 2021404620222023=202140444046=20234046=12\frac{2021}{4046} - \frac{2022}{2023} = \frac{2021 - 4044}{4046} = \frac{-2023}{4046} = -\frac{1}{2}. So, I=12023u1/21uduI = \frac{1}{2023} \int \frac{u^{-1/2}}{1-u} du. Now, let v=uv = \sqrt{u}. Then u=v2u = v^2 and du=2vdvdu = 2v dv. I=120231v(1v2)(2vdv)=2202311v2dvI = \frac{1}{2023} \int \frac{1}{v(1-v^2)} (2v dv) = \frac{2}{2023} \int \frac{1}{1-v^2} dv. This is a standard integral: 11v2dv=12ln1+v1v+C\int \frac{1}{1-v^2} dv = \frac{1}{2} \ln \left| \frac{1+v}{1-v} \right| + C. So, I=22023(12ln1+v1v)+C=12023ln1+v1v+CI = \frac{2}{2023} \left( \frac{1}{2} \ln \left| \frac{1+v}{1-v} \right| \right) + C = \frac{1}{2023} \ln \left| \frac{1+v}{1-v} \right| + C. Substituting back v=uv = \sqrt{u}: I=12023ln1+u1u+CI = \frac{1}{2023} \ln \left| \frac{1+\sqrt{u}}{1-\sqrt{u}} \right| + C. Finally, substituting back u=x2023u = x^{2023}: I=12023ln1+x20231x2023+C=12023ln1+x2023/21x2023/2+CI = \frac{1}{2023} \ln \left| \frac{1+\sqrt{x^{2023}}}{1-\sqrt{x^{2023}}} \right| + C = \frac{1}{2023} \ln \left| \frac{1+x^{2023/2}}{1-x^{2023/2}} \right| + C.