Question
Question: $\int \frac{\sqrt{x^{2021}}}{1-x^{2023}}dx$...
∫1−x2023x2021dx

20231ln1−x2023/21+x2023/2+C
Solution
To solve the integral I=∫1−x2023x2021dx, we use a substitution. Let u=x2023. Then du=2023x2022dx, which implies dx=2023x2022du=2023u2022/2023du. The numerator is x2021=x2021/2. Since x=u1/2023, we have x2021/2=(u1/2023)2021/2=u2021/4046. Substituting these into the integral: I=∫1−uu2021/4046⋅2023u2022/2023du=20231∫1−uu2021/4046u−2022/2023du. The exponent of u simplifies to 40462021−20232022=40462021−4044=4046−2023=−21. So, I=20231∫1−uu−1/2du. Now, let v=u. Then u=v2 and du=2vdv. I=20231∫v(1−v2)1(2vdv)=20232∫1−v21dv. This is a standard integral: ∫1−v21dv=21ln1−v1+v+C. So, I=20232(21ln1−v1+v)+C=20231ln1−v1+v+C. Substituting back v=u: I=20231ln1−u1+u+C. Finally, substituting back u=x2023: I=20231ln1−x20231+x2023+C=20231ln1−x2023/21+x2023/2+C.