Solveeit Logo

Question

Question: Q.21. If $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & -1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} -2 & 1 ...

Q.21. If A=[112013]A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & -1 & 3 \end{bmatrix}, B=[213102]B = \begin{bmatrix} -2 & 1 \\ 3 & -1 \\ 0 & 2 \end{bmatrix}, show that AB is nonsingular.

Answer

AB is nonsingular because its determinant is -17 ≠ 0.

Explanation

Solution

We first compute the product ABAB. Given

A=[112013]andB=[213102],A=\begin{bmatrix} 1 & -1 & 2 \\ 0 & -1 & 3 \end{bmatrix} \quad \text{and} \quad B=\begin{bmatrix} -2 & 1 \\ 3 & -1 \\ 0 & 2 \end{bmatrix},

the product ABAB is a 2×22 \times 2 matrix where:

  • For the (1,1)(1,1) entry:
    1(2)+(1)3+20=23=51\cdot(-2) + (-1)\cdot3 + 2\cdot0 = -2 - 3 = -5.

  • For the (1,2)(1,2) entry:
    11+(1)(1)+22=1+1+4=61\cdot1 + (-1)\cdot(-1) + 2\cdot2 = 1 + 1 + 4 = 6.

  • For the (2,1)(2,1) entry:
    0(2)+(1)3+30=30\cdot(-2) + (-1)\cdot3 + 3\cdot0 = -3.

  • For the (2,2)(2,2) entry:
    01+(1)(1)+32=1+6=70\cdot1 + (-1)\cdot(-1) + 3\cdot2 = 1 + 6 = 7.

Thus,

AB=[5637].AB=\begin{bmatrix}-5 & 6 \\ -3 & 7 \end{bmatrix}.

To show that ABAB is nonsingular, we calculate its determinant:

det(AB)=(5)(7)(6)(3)=35+18=17.\det(AB)=(-5)(7)- (6)(-3) = -35 + 18 = -17.

Since det(AB)0\det(AB) \neq 0, the matrix ABAB is nonsingular.