Question
Question: Q.21. If $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & -1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} -2 & 1 ...
Q.21. If A=[10−1−123], B=−2301−12, show that AB is nonsingular.
Answer
AB is nonsingular because its determinant is -17 ≠ 0.
Explanation
Solution
We first compute the product AB. Given
A=[10−1−123]andB=−2301−12,the product AB is a 2×2 matrix where:
-
For the (1,1) entry:
1⋅(−2)+(−1)⋅3+2⋅0=−2−3=−5. -
For the (1,2) entry:
1⋅1+(−1)⋅(−1)+2⋅2=1+1+4=6. -
For the (2,1) entry:
0⋅(−2)+(−1)⋅3+3⋅0=−3. -
For the (2,2) entry:
0⋅1+(−1)⋅(−1)+3⋅2=1+6=7.
Thus,
AB=[−5−367].To show that AB is nonsingular, we calculate its determinant:
det(AB)=(−5)(7)−(6)(−3)=−35+18=−17.Since det(AB)=0, the matrix AB is nonsingular.