Solveeit Logo

Question

Question: Find orthocentre of the triangle formed by the points $\left(ct_1,\frac{c}{t_1}\right)$, $\left(ct_2...

Find orthocentre of the triangle formed by the points (ct1,ct1)\left(ct_1,\frac{c}{t_1}\right), (ct2,ct2)\left(ct_2,\frac{c}{t_2}\right) and (ct3,ct3)\left(ct_3,\frac{c}{t_3}\right) and hence find circumcentre of the same triangle.

Answer

The orthocentre of the triangle is (ct1t2t3,ct1t2t3)\left(-\frac{c}{t_1 t_2 t_3}, -c t_1 t_2 t_3\right). The circumcentre of the triangle is (c2(t1+t2+t3),c2(1t1+1t2+1t3))\left(\frac{c}{2}(t_1+t_2+t_3), \frac{c}{2}\left(\frac{1}{t_1}+\frac{1}{t_2}+\frac{1}{t_3}\right)\right).

Explanation

Solution

The vertices of the triangle are A=(ct1,ct1)A = \left(ct_1,\frac{c}{t_1}\right), B=(ct2,ct2)B = \left(ct_2,\frac{c}{t_2}\right), and C=(ct3,ct3)C = \left(ct_3,\frac{c}{t_3}\right). These points lie on the rectangular hyperbola xy=c2xy = c^2.

1. Orthocentre: The slope of the side BC is mBC=1t2t3m_{BC} = -\frac{1}{t_2 t_3}. The altitude from vertex A to BC has a slope mAD=t2t3m_{AD} = t_2 t_3. The equation of the altitude from A is yct1=t2t3(xct1)y - \frac{c}{t_1} = t_2 t_3 (x - ct_1), which simplifies to y=t2t3xct1t2t3+ct1y = t_2 t_3 x - c t_1 t_2 t_3 + \frac{c}{t_1} (1).

Similarly, the slope of the side AC is mAC=1t1t3m_{AC} = -\frac{1}{t_1 t_3}. The altitude from vertex B to AC has a slope mBE=t1t3m_{BE} = t_1 t_3. The equation of the altitude from B is yct2=t1t3(xct2)y - \frac{c}{t_2} = t_1 t_3 (x - ct_2), which simplifies to y=t1t3xct1t2t3+ct2y = t_1 t_3 x - c t_1 t_2 t_3 + \frac{c}{t_2} (2).

Equating (1) and (2) to find the intersection (orthocentre H): t2t3xct1t2t3+ct1=t1t3xct1t2t3+ct2t_2 t_3 x - c t_1 t_2 t_3 + \frac{c}{t_1} = t_1 t_3 x - c t_1 t_2 t_3 + \frac{c}{t_2} t3x(t2t1)=c(1t21t1)=ct1t2t1t2t_3 x (t_2 - t_1) = c \left(\frac{1}{t_2} - \frac{1}{t_1}\right) = c \frac{t_1 - t_2}{t_1 t_2} Assuming t1t2t_1 \neq t_2, we divide by (t2t1)(t_2 - t_1): t3x=ct1t2t_3 x = - \frac{c}{t_1 t_2} x=ct1t2t3x = -\frac{c}{t_1 t_2 t_3}

Substitute xx back into (1): y=t2t3(ct1t2t3)ct1t2t3+ct1y = t_2 t_3 \left(-\frac{c}{t_1 t_2 t_3}\right) - c t_1 t_2 t_3 + \frac{c}{t_1} y=ct1ct1t2t3+ct1y = -\frac{c}{t_1} - c t_1 t_2 t_3 + \frac{c}{t_1} y=ct1t2t3y = -c t_1 t_2 t_3

The orthocentre HH is (ct1t2t3,ct1t2t3)\left(-\frac{c}{t_1 t_2 t_3}, -c t_1 t_2 t_3\right).

2. Circumcentre: For a triangle whose vertices lie on the rectangular hyperbola xy=c2xy=c^2, the equation of the circumcircle is given by: x2+y2c(t1+t2+t3)xc(1t1+1t2+1t3)y+c2(t1t2+t2t3+t3t1)=0x^2 + y^2 - c(t_1+t_2+t_3)x - c\left(\frac{1}{t_1}+\frac{1}{t_2}+\frac{1}{t_3}\right)y + c^2(t_1t_2+t_2t_3+t_3t_1) = 0.

The general equation of a circle is x2+y2+2Gx+2Fy+K=0x^2 + y^2 + 2Gx + 2Fy + K = 0. Comparing the two equations, we have: 2G=c(t1+t2+t3)    G=c2(t1+t2+t3)2G = -c(t_1+t_2+t_3) \implies G = -\frac{c}{2}(t_1+t_2+t_3) 2F=c(1t1+1t2+1t3)    F=c2(1t1+1t2+1t3)2F = -c\left(\frac{1}{t_1}+\frac{1}{t_2}+\frac{1}{t_3}\right) \implies F = -\frac{c}{2}\left(\frac{1}{t_1}+\frac{1}{t_2}+\frac{1}{t_3}\right)

The circumcentre is (G,F)(-G, -F). Circumcentre O=(c2(t1+t2+t3),c2(1t1+1t2+1t3))O = \left(\frac{c}{2}(t_1+t_2+t_3), \frac{c}{2}\left(\frac{1}{t_1}+\frac{1}{t_2}+\frac{1}{t_3}\right)\right).