Solveeit Logo

Question

Question: Three students $S_1, S_2$, and $S_3$ are given a problem to solve. Consider the following events: $...

Three students S1,S2S_1, S_2, and S3S_3 are given a problem to solve. Consider the following events:

UU: At least one of S1,S2S_1, S_2, and S3S_3 can solve the problem,

VV: S1S_1 can solve the problem, given that neither S2S_2 nor S3S_3 can solve the problem,

WW: S2S_2 can solve the problem and S3S_3 cannot solve the problem,

TT: S3S_3 can solve the problem.

For any event EE, let P(E)P(E) denote the probability of EE. If

P(U)=12P(U)=\frac{1}{2}, P(V)=110P(V)=\frac{1}{10}, and P(W)=112P(W)=\frac{1}{12},

then P(T)P(T) is equal to

A

1336\frac{13}{36}

B

13\frac{1}{3}

C

1960\frac{19}{60}

D

14\frac{1}{4}

Answer

1336\frac{13}{36}

Explanation

Solution

Let S1,S2,S3S_1, S_2, S_3 be the events that students S1,S2,S3S_1, S_2, S_3 can solve the problem, respectively. Let SicS_i^c be the event that student SiS_i cannot solve the problem.

The event UU is "At least one of S1,S2S_1, S_2, and S3S_3 can solve the problem". This is S1S2S3S_1 \cup S_2 \cup S_3. We are given P(U)=P(S1S2S3)=1/2P(U) = P(S_1 \cup S_2 \cup S_3) = 1/2. The complement of UU, UcU^c, is the event that none of them can solve the problem, which is S1cS2cS3cS_1^c \cap S_2^c \cap S_3^c. P(Uc)=P(S1cS2cS3c)=1P(U)=11/2=1/2P(U^c) = P(S_1^c \cap S_2^c \cap S_3^c) = 1 - P(U) = 1 - 1/2 = 1/2.

The event VV is "S1S_1 can solve the problem, given that neither S2S_2 nor S3S_3 can solve the problem". This is the conditional probability P(S1S2cS3c)P(S_1 | S_2^c \cap S_3^c). We are given P(V)=P(S1S2cS3c)=1/10P(V) = P(S_1 | S_2^c \cap S_3^c) = 1/10. Using the definition of conditional probability, P(S1S2cS3c)=P(S1S2cS3c)P(S2cS3c)P(S_1 | S_2^c \cap S_3^c) = \frac{P(S_1 \cap S_2^c \cap S_3^c)}{P(S_2^c \cap S_3^c)}. So, P(S1S2cS3c)P(S2cS3c)=1/10\frac{P(S_1 \cap S_2^c \cap S_3^c)}{P(S_2^c \cap S_3^c)} = 1/10.

Consider the event S2cS3cS_2^c \cap S_3^c. This event can be partitioned into two disjoint events based on whether S1S_1 solves the problem or not: (S1S2cS3c)(S_1 \cap S_2^c \cap S_3^c) and (S1cS2cS3c)(S_1^c \cap S_2^c \cap S_3^c). So, P(S2cS3c)=P(S1S2cS3c)+P(S1cS2cS3c)P(S_2^c \cap S_3^c) = P(S_1 \cap S_2^c \cap S_3^c) + P(S_1^c \cap S_2^c \cap S_3^c). Let a=P(S1S2cS3c)a = P(S_1 \cap S_2^c \cap S_3^c). We know P(S1cS2cS3c)=1/2P(S_1^c \cap S_2^c \cap S_3^c) = 1/2. So, P(S2cS3c)=a+1/2P(S_2^c \cap S_3^c) = a + 1/2. Substitute this into the equation from P(V)P(V): aa+1/2=1/10\frac{a}{a + 1/2} = 1/10. 10a=a+1/210a = a + 1/2 9a=1/29a = 1/2 a=1/18a = 1/18. So, P(S1S2cS3c)=1/18P(S_1 \cap S_2^c \cap S_3^c) = 1/18. And P(S2cS3c)=1/18+1/2=1/18+9/18=10/18=5/9P(S_2^c \cap S_3^c) = 1/18 + 1/2 = 1/18 + 9/18 = 10/18 = 5/9.

The event WW is "S2S_2 can solve the problem and S3S_3 cannot solve the problem". This is S2S3cS_2 \cap S_3^c. We are given P(W)=P(S2S3c)=1/12P(W) = P(S_2 \cap S_3^c) = 1/12.

The event TT is "S3S_3 can solve the problem". This is S3S_3. We want to find P(T)=P(S3)P(T) = P(S_3). The complement of TT is Tc=S3cT^c = S_3^c. We have P(S3)=1P(S3c)P(S_3) = 1 - P(S_3^c).

Consider the event S3cS_3^c. This event can be partitioned based on the outcomes of S1S_1 and S2S_2: S3c=(S1S2S3c)(S1S2cS3c)(S1cS2S3c)(S1cS2cS3c)S_3^c = (S_1 \cap S_2 \cap S_3^c) \cup (S_1 \cap S_2^c \cap S_3^c) \cup (S_1^c \cap S_2 \cap S_3^c) \cup (S_1^c \cap S_2^c \cap S_3^c). These four events are mutually exclusive. P(S3c)=P(S1S2S3c)+P(S1S2cS3c)+P(S1cS2S3c)+P(S1cS2cS3c)P(S_3^c) = P(S_1 \cap S_2 \cap S_3^c) + P(S_1 \cap S_2^c \cap S_3^c) + P(S_1^c \cap S_2 \cap S_3^c) + P(S_1^c \cap S_2^c \cap S_3^c).

We know: P(S1S2cS3c)=1/18P(S_1 \cap S_2^c \cap S_3^c) = 1/18. P(S1cS2cS3c)=1/2P(S_1^c \cap S_2^c \cap S_3^c) = 1/2.

Consider the event S2S3cS_2 \cap S_3^c. This event is the union of two disjoint events: S2S3c=(S1S2S3c)(S1cS2S3c)S_2 \cap S_3^c = (S_1 \cap S_2 \cap S_3^c) \cup (S_1^c \cap S_2 \cap S_3^c). So, P(S2S3c)=P(S1S2S3c)+P(S1cS2S3c)P(S_2 \cap S_3^c) = P(S_1 \cap S_2 \cap S_3^c) + P(S_1^c \cap S_2 \cap S_3^c). We are given P(S2S3c)=1/12P(S_2 \cap S_3^c) = 1/12. So, P(S1S2S3c)+P(S1cS2S3c)=1/12P(S_1 \cap S_2 \cap S_3^c) + P(S_1^c \cap S_2 \cap S_3^c) = 1/12.

Now substitute the known probabilities into the expression for P(S3c)P(S_3^c): P(S3c)=[P(S1S2S3c)+P(S1cS2S3c)]+P(S1S2cS3c)+P(S1cS2cS3c)P(S_3^c) = [P(S_1 \cap S_2 \cap S_3^c) + P(S_1^c \cap S_2 \cap S_3^c)] + P(S_1 \cap S_2^c \cap S_3^c) + P(S_1^c \cap S_2^c \cap S_3^c). P(S3c)=P(S2S3c)+P(S1S2cS3c)+P(S1cS2cS3c)P(S_3^c) = P(S_2 \cap S_3^c) + P(S_1 \cap S_2^c \cap S_3^c) + P(S_1^c \cap S_2^c \cap S_3^c). P(S3c)=1/12+1/18+1/2P(S_3^c) = 1/12 + 1/18 + 1/2.

To sum these fractions, find a common denominator, which is 36. 1/12=3/361/12 = 3/36. 1/18=2/361/18 = 2/36. 1/2=18/361/2 = 18/36. P(S3c)=3/36+2/36+18/36=(3+2+18)/36=23/36P(S_3^c) = 3/36 + 2/36 + 18/36 = (3 + 2 + 18)/36 = 23/36.

Finally, P(T)=P(S3)=1P(S3c)=123/36=(3623)/36=13/36P(T) = P(S_3) = 1 - P(S_3^c) = 1 - 23/36 = (36 - 23)/36 = 13/36.

This matches option (A). The solution did not require assuming independence of the events S1,S2,S3S_1, S_2, S_3.