Solveeit Logo

Question

Question: The numerical value of $(x^{1/a-b})^{1/a-c} \times (x^{1/b-c})^{1/b-a}$ $\times (x^{1/c-a})^{1/c-b}$...

The numerical value of (x1/ab)1/ac×(x1/bc)1/ba(x^{1/a-b})^{1/a-c} \times (x^{1/b-c})^{1/b-a} ×(x1/ca)1/cb\times (x^{1/c-a})^{1/c-b} is (a,b,c are distinct real numbers)(a, b, c \text{ are distinct real numbers})

A

1

B

8

C

0

D

None

Answer

1

Explanation

Solution

The problem asks for the numerical value of the given expression: (x1/(ab))1/(ac)×(x1/(bc))1/(ba)×(x1/(ca))1/(cb)(x^{1/(a-b)})^{1/(a-c)} \times (x^{1/(b-c)})^{1/(b-a)} \times (x^{1/(c-a)})^{1/(c-b)} where a,b,ca, b, c are distinct real numbers.

We will use the following exponent rules:

  1. (pm)n=pmn(p^m)^n = p^{mn}
  2. pm×pn=pm+np^m \times p^n = p^{m+n}
  3. p0=1p^0 = 1 (for p0p \neq 0)

Step 1: Simplify each term using the rule (pm)n=pmn(p^m)^n = p^{mn}.

First term: (x1/(ab))1/(ac)=x1(ab)(ac)(x^{1/(a-b)})^{1/(a-c)} = x^{\frac{1}{(a-b)(a-c)}}

Second term: (x1/(bc))1/(ba)=x1(bc)(ba)(x^{1/(b-c)})^{1/(b-a)} = x^{\frac{1}{(b-c)(b-a)}}

Third term: (x1/(ca))1/(cb)=x1(ca)(cb)(x^{1/(c-a)})^{1/(c-b)} = x^{\frac{1}{(c-a)(c-b)}}

Step 2: Combine the terms using the rule pm×pn=pm+np^m \times p^n = p^{m+n}.

The entire expression becomes: x1(ab)(ac)+1(bc)(ba)+1(ca)(cb)x^{\frac{1}{(a-b)(a-c)} + \frac{1}{(b-c)(b-a)} + \frac{1}{(c-a)(c-b)}}

Step 3: Simplify the sum of the exponents.

Let EE be the exponent: E=1(ab)(ac)+1(bc)(ba)+1(ca)(cb)E = \frac{1}{(a-b)(a-c)} + \frac{1}{(b-c)(b-a)} + \frac{1}{(c-a)(c-b)}

To simplify this sum, we can rewrite the terms in the denominators to have a consistent order, for example, using (ab)(a-b), (bc)(b-c), and (ca)(c-a).

Notice the following relationships: ba=(ab)b-a = -(a-b) ac=(ca)a-c = -(c-a) cb=(bc)c-b = -(b-c)

Now, substitute these into the terms of EE: The first term remains: 1(ab)(ac)\frac{1}{(a-b)(a-c)} The second term becomes: 1(bc)((ab))=1(bc)(ab)\frac{1}{(b-c)(-(a-b))} = \frac{-1}{(b-c)(a-b)} The third term becomes: 1(ca)((bc))=1(ca)(bc)\frac{1}{(c-a)(-(b-c))} = \frac{-1}{(c-a)(b-c)}

So, E=1(ab)(ac)1(bc)(ab)1(ca)(bc)E = \frac{1}{(a-b)(a-c)} - \frac{1}{(b-c)(a-b)} - \frac{1}{(c-a)(b-c)}

To add these fractions, we find the least common multiple (LCM) of the denominators. The LCM of (ab)(ac)(a-b)(a-c), (bc)(ab)(b-c)(a-b), and (ca)(bc)(c-a)(b-c) is (ab)(bc)(ca)(a-b)(b-c)(c-a).

Let's rewrite the first term using (ca)(c-a) instead of (ac)(a-c): 1(ab)((ca))=1(ab)(ca)\frac{1}{(a-b)(-(c-a))} = \frac{-1}{(a-b)(c-a)}.

Now, express all terms with the common denominator (ab)(bc)(ca)(a-b)(b-c)(c-a): E=1(ab)(ca)×(bc)(bc)1(bc)(ab)×(ca)(ca)1(ca)(bc)×(ab)(ab)E = \frac{-1}{(a-b)(c-a)} \times \frac{(b-c)}{(b-c)} - \frac{1}{(b-c)(a-b)} \times \frac{(c-a)}{(c-a)} - \frac{1}{(c-a)(b-c)} \times \frac{(a-b)}{(a-b)}

E=(bc)(ab)(bc)(ca)(ca)(ab)(bc)(ca)(ab)(ab)(bc)(ca)E = \frac{-(b-c)}{(a-b)(b-c)(c-a)} - \frac{(c-a)}{(a-b)(b-c)(c-a)} - \frac{(a-b)}{(a-b)(b-c)(c-a)}

Combine the numerators: Numerator =(bc)(ca)(ab)= -(b-c) - (c-a) - (a-b) Numerator =b+cc+aa+b= -b + c - c + a - a + b Numerator =(b+b)+(cc)+(aa)= (-b+b) + (c-c) + (a-a) Numerator =0+0+0=0= 0 + 0 + 0 = 0

So, the sum of the exponents E=0(ab)(bc)(ca)E = \frac{0}{(a-b)(b-c)(c-a)}. Since a,b,ca, b, c are distinct real numbers, none of (ab)(a-b), (bc)(b-c), or (ca)(c-a) are zero. Therefore, the denominator (ab)(bc)(ca)(a-b)(b-c)(c-a) is non-zero. Thus, E=0E = 0.

Alternative method for simplifying the exponent:

Let P=abP = a-b, Q=bcQ = b-c, R=caR = c-a.

Notice that P+Q+R=(ab)+(bc)+(ca)=0P+Q+R = (a-b) + (b-c) + (c-a) = 0. Also, ac=(ca)=Ra-c = -(c-a) = -R. ba=(ab)=Pb-a = -(a-b) = -P. cb=(bc)=Qc-b = -(b-c) = -Q.

Substitute these into the exponent EE: E=1P(R)+1Q(P)+1R(Q)E = \frac{1}{P(-R)} + \frac{1}{Q(-P)} + \frac{1}{R(-Q)} E=1PR+1QP+1RQE = \frac{-1}{PR} + \frac{-1}{QP} + \frac{-1}{RQ} E=(1PR+1QP+1RQ)E = -\left( \frac{1}{PR} + \frac{1}{QP} + \frac{1}{RQ} \right)

To add these fractions, the common denominator is PQRPQR: E=(QPQR+RPQR+PPQR)E = -\left( \frac{Q}{PQR} + \frac{R}{PQR} + \frac{P}{PQR} \right) E=P+Q+RPQRE = -\frac{P+Q+R}{PQR}

Since P+Q+R=0P+Q+R=0, we have: E=0PQR=0E = -\frac{0}{PQR} = 0. (Note: P,Q,RP, Q, R are non-zero because a,b,ca, b, c are distinct.)

Step 4: Substitute the simplified exponent back into the expression.

The original expression simplifies to xE=x0x^E = x^0. Assuming x0x \neq 0, x0=1x^0 = 1.

The numerical value of the expression is 1.