Question
Question: The numerical value of $(x^{1/a-b})^{1/a-c} \times (x^{1/b-c})^{1/b-a}$ $\times (x^{1/c-a})^{1/c-b}$...
The numerical value of (x1/a−b)1/a−c×(x1/b−c)1/b−a ×(x1/c−a)1/c−b is (a,b,c are distinct real numbers)

1
8
0
None
1
Solution
The problem asks for the numerical value of the given expression: (x1/(a−b))1/(a−c)×(x1/(b−c))1/(b−a)×(x1/(c−a))1/(c−b) where a,b,c are distinct real numbers.
We will use the following exponent rules:
- (pm)n=pmn
- pm×pn=pm+n
- p0=1 (for p=0)
Step 1: Simplify each term using the rule (pm)n=pmn.
First term: (x1/(a−b))1/(a−c)=x(a−b)(a−c)1
Second term: (x1/(b−c))1/(b−a)=x(b−c)(b−a)1
Third term: (x1/(c−a))1/(c−b)=x(c−a)(c−b)1
Step 2: Combine the terms using the rule pm×pn=pm+n.
The entire expression becomes: x(a−b)(a−c)1+(b−c)(b−a)1+(c−a)(c−b)1
Step 3: Simplify the sum of the exponents.
Let E be the exponent: E=(a−b)(a−c)1+(b−c)(b−a)1+(c−a)(c−b)1
To simplify this sum, we can rewrite the terms in the denominators to have a consistent order, for example, using (a−b), (b−c), and (c−a).
Notice the following relationships: b−a=−(a−b) a−c=−(c−a) c−b=−(b−c)
Now, substitute these into the terms of E: The first term remains: (a−b)(a−c)1 The second term becomes: (b−c)(−(a−b))1=(b−c)(a−b)−1 The third term becomes: (c−a)(−(b−c))1=(c−a)(b−c)−1
So, E=(a−b)(a−c)1−(b−c)(a−b)1−(c−a)(b−c)1
To add these fractions, we find the least common multiple (LCM) of the denominators. The LCM of (a−b)(a−c), (b−c)(a−b), and (c−a)(b−c) is (a−b)(b−c)(c−a).
Let's rewrite the first term using (c−a) instead of (a−c): (a−b)(−(c−a))1=(a−b)(c−a)−1.
Now, express all terms with the common denominator (a−b)(b−c)(c−a): E=(a−b)(c−a)−1×(b−c)(b−c)−(b−c)(a−b)1×(c−a)(c−a)−(c−a)(b−c)1×(a−b)(a−b)
E=(a−b)(b−c)(c−a)−(b−c)−(a−b)(b−c)(c−a)(c−a)−(a−b)(b−c)(c−a)(a−b)
Combine the numerators: Numerator =−(b−c)−(c−a)−(a−b) Numerator =−b+c−c+a−a+b Numerator =(−b+b)+(c−c)+(a−a) Numerator =0+0+0=0
So, the sum of the exponents E=(a−b)(b−c)(c−a)0. Since a,b,c are distinct real numbers, none of (a−b), (b−c), or (c−a) are zero. Therefore, the denominator (a−b)(b−c)(c−a) is non-zero. Thus, E=0.
Alternative method for simplifying the exponent:
Let P=a−b, Q=b−c, R=c−a.
Notice that P+Q+R=(a−b)+(b−c)+(c−a)=0. Also, a−c=−(c−a)=−R. b−a=−(a−b)=−P. c−b=−(b−c)=−Q.
Substitute these into the exponent E: E=P(−R)1+Q(−P)1+R(−Q)1 E=PR−1+QP−1+RQ−1 E=−(PR1+QP1+RQ1)
To add these fractions, the common denominator is PQR: E=−(PQRQ+PQRR+PQRP) E=−PQRP+Q+R
Since P+Q+R=0, we have: E=−PQR0=0. (Note: P,Q,R are non-zero because a,b,c are distinct.)
Step 4: Substitute the simplified exponent back into the expression.
The original expression simplifies to xE=x0. Assuming x=0, x0=1.
The numerical value of the expression is 1.