Solveeit Logo

Question

Question: Let $f_1$ be a differentiable function satisfying $$f_2(x) = \lim_{n \to \infty} \binom{n}{k} \left(...

Let f1f_1 be a differentiable function satisfying f2(x)=limn(nk)(f1(xn)f1(0))k;f1(0)=13,f_2(x) = \lim_{n \to \infty} \binom{n}{k} \left( f_1(\frac{x}{n}) - f_1(0) \right)^k; \qquad f_1'(0) = \frac{1}{3}, f3(k)=limx01xr=1kf3(xr);kN,f3(0)=0,f3(0)=1.f_3(k) = \lim_{x \to 0} \frac{1}{x} \sum_{r=1}^{k} f_3(\frac{x}{r}); \qquad k \in N, f_3(0) = 0, f_3'(0) = 1. Then which of the following option(s) is/are equal to λ=r=010((10r)r!f2(3)+f3(r+1)f3(r)f3(11)).\lambda = \sum_{r=0}^{10} \left( \binom{10}{r} \cdot r! \cdot f_2(3) + \frac{f_3(r+1)-f_3(r)}{f_3(11)} \right).

A

1024

B

1026

C

1025

D

1203

Answer

1025

Explanation

Solution

The problem requires us to evaluate a complex sum λ\lambda by first determining the functions f2(x)f_2(x) and f3(k)f_3(k).

Step 1: Evaluate f2(x)f_2(x)

We are given f2(x)=limn(nk)(f1(xn)f1(0))kf_2(x) = \lim_{n \to \infty} \binom{n}{k} \left( f_1(\frac{x}{n}) - f_1(0) \right)^k and f1(0)=13f_1'(0) = \frac{1}{3}. Since f1f_1 is differentiable, we know that limh0f1(h)f1(0)h=f1(0)\lim_{h \to 0} \frac{f_1(h) - f_1(0)}{h} = f_1'(0). Let h=xnh = \frac{x}{n}. As nn \to \infty, h0h \to 0. So, limnf1(xn)f1(0)xn=f1(0)=13\lim_{n \to \infty} \frac{f_1(\frac{x}{n}) - f_1(0)}{\frac{x}{n}} = f_1'(0) = \frac{1}{3}.

We can rewrite the term (f1(xn)f1(0))k\left( f_1(\frac{x}{n}) - f_1(0) \right)^k as: (f1(xn)f1(0))k=(f1(xn)f1(0)xnxn)k=(f1(xn)f1(0)xn)k(xn)k\left( f_1(\frac{x}{n}) - f_1(0) \right)^k = \left( \frac{f_1(\frac{x}{n}) - f_1(0)}{\frac{x}{n}} \cdot \frac{x}{n} \right)^k = \left( \frac{f_1(\frac{x}{n}) - f_1(0)}{\frac{x}{n}} \right)^k \left(\frac{x}{n}\right)^k As nn \to \infty, this approaches (f1(0))k(xn)k=(13)kxknk\left(f_1'(0)\right)^k \left(\frac{x}{n}\right)^k = \left(\frac{1}{3}\right)^k \frac{x^k}{n^k}.

Now consider the binomial coefficient (nk)\binom{n}{k}: (nk)=n(n1)(nk+1)k!=nk(11n)(1k1n)k!\binom{n}{k} = \frac{n(n-1)\dots(n-k+1)}{k!} = \frac{n^k \left(1-\frac{1}{n}\right)\dots\left(1-\frac{k-1}{n}\right)}{k!} As nn \to \infty, n(n1)(nk+1)nk1\frac{n(n-1)\dots(n-k+1)}{n^k} \to 1. So, (nk)nkk!\binom{n}{k} \approx \frac{n^k}{k!} for large nn.

Substitute these into the expression for f2(x)f_2(x): f2(x)=limn(nkk!)((13)kxknk)f_2(x) = \lim_{n \to \infty} \left( \frac{n^k}{k!} \right) \left( \left(\frac{1}{3}\right)^k \frac{x^k}{n^k} \right) f2(x)=xkk!3kf_2(x) = \frac{x^k}{k! 3^k} In the summation for λ\lambda, f2(3)f_2(3) is used, and the summation index is rr. This implies kk in f2(x)f_2(x) should be replaced by rr when used in the summation. So, f2(3)=3rr!3r=1r!f_2(3) = \frac{3^r}{r! 3^r} = \frac{1}{r!}.

Step 2: Evaluate f3(k)f_3(k)

We are given f3(k)=limx01xr=1kf3(xr)f_3(k) = \lim_{x \to 0} \frac{1}{x} \sum_{r=1}^{k} f_3(\frac{x}{r}) with f3(0)=0f_3(0) = 0 and f3(0)=1f_3'(0) = 1. Let S(x)=r=1kf3(xr)S(x) = \sum_{r=1}^{k} f_3(\frac{x}{r}). As x0x \to 0, S(x)r=1kf3(0)=r=1k0=0S(x) \to \sum_{r=1}^{k} f_3(0) = \sum_{r=1}^{k} 0 = 0. The limit is of the form 00\frac{0}{0}, so we can apply L'Hopital's rule: f3(k)=limx0ddx(r=1kf3(xr))ddx(x)=limx0r=1kf3(xr)1r1f_3(k) = \lim_{x \to 0} \frac{\frac{d}{dx} \left( \sum_{r=1}^{k} f_3(\frac{x}{r}) \right)}{\frac{d}{dx}(x)} = \lim_{x \to 0} \frac{\sum_{r=1}^{k} f_3'(\frac{x}{r}) \cdot \frac{1}{r}}{1} As x0x \to 0, xr0\frac{x}{r} \to 0, so f3(xr)f3(0)=1f_3'(\frac{x}{r}) \to f_3'(0) = 1. Therefore, f3(k)=r=1kf3(0)1r=r=1k11r=r=1k1rf_3(k) = \sum_{r=1}^{k} f_3'(0) \cdot \frac{1}{r} = \sum_{r=1}^{k} 1 \cdot \frac{1}{r} = \sum_{r=1}^{k} \frac{1}{r} This is the kk-th harmonic number, HkH_k. So, f3(k)=Hkf_3(k) = H_k.

Step 3: Calculate λ\lambda

We need to calculate λ=r=010((10r)r!f2(3)+f3(r+1)f3(r)f3(11))\lambda = \sum_{r=0}^{10} \left( \binom{10}{r} \cdot r! \cdot f_2(3) + \frac{f_3(r+1)-f_3(r)}{f_3(11)} \right).

Let's evaluate the terms inside the summation: First term: (10r)r!f2(3)\binom{10}{r} \cdot r! \cdot f_2(3) Using f2(3)=1r!f_2(3) = \frac{1}{r!}: (10r)r!1r!=(10r)\binom{10}{r} \cdot r! \cdot \frac{1}{r!} = \binom{10}{r}

Second term: f3(r+1)f3(r)f3(11)\frac{f_3(r+1)-f_3(r)}{f_3(11)} Using f3(k)=Hkf_3(k) = H_k: f3(r+1)f3(r)=Hr+1Hr=(Hr+1r+1)Hr=1r+1f_3(r+1) - f_3(r) = H_{r+1} - H_r = \left( H_r + \frac{1}{r+1} \right) - H_r = \frac{1}{r+1} The denominator is f3(11)=H11f_3(11) = H_{11}. So the second term is 1r+1H11=1(r+1)H11\frac{\frac{1}{r+1}}{H_{11}} = \frac{1}{(r+1)H_{11}}.

Now substitute these back into the expression for λ\lambda: λ=r=010((10r)+1(r+1)H11)\lambda = \sum_{r=0}^{10} \left( \binom{10}{r} + \frac{1}{(r+1)H_{11}} \right) We can split the summation into two parts: λ=r=010(10r)+r=0101(r+1)H11\lambda = \sum_{r=0}^{10} \binom{10}{r} + \sum_{r=0}^{10} \frac{1}{(r+1)H_{11}}

Part 1: r=010(10r)\sum_{r=0}^{10} \binom{10}{r} This is the sum of binomial coefficients for n=10n=10, which is 2102^{10}. r=010(10r)=210=1024\sum_{r=0}^{10} \binom{10}{r} = 2^{10} = 1024

Part 2: r=0101(r+1)H11\sum_{r=0}^{10} \frac{1}{(r+1)H_{11}} Since H11H_{11} is a constant with respect to rr, we can factor it out: 1H11r=0101r+1\frac{1}{H_{11}} \sum_{r=0}^{10} \frac{1}{r+1} Let j=r+1j = r+1. When r=0r=0, j=1j=1. When r=10r=10, j=11j=11. The sum becomes: j=1111j=H11\sum_{j=1}^{11} \frac{1}{j} = H_{11} So, the second part of the sum is: 1H11H11=1\frac{1}{H_{11}} \cdot H_{11} = 1

Final value of λ\lambda: λ=1024+1=1025\lambda = 1024 + 1 = 1025

The final answer is 1025\boxed{\text{1025}}.