Solveeit Logo

Question

Question: Let $\Delta$=$\begin{vmatrix} 2bc-a^2 & c^2 & b^2 \\ c^2 & 2ca-b^2 & a^2 \\ b^2 & a^2 & 2ab-c^2 \end...

Let Δ\Delta=2bca2c2b2c22cab2a2b2a22abc2\begin{vmatrix} 2bc-a^2 & c^2 & b^2 \\ c^2 & 2ca-b^2 & a^2 \\ b^2 & a^2 & 2ab-c^2 \end{vmatrix}, then Δ\Delta can be expressed as

A

abcbcacab2\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}^2

B

cbaacbbac2\begin{vmatrix} c & b & a \\ a & c & b \\ b & a & c \end{vmatrix}^2

C

cabcbacab2\begin{vmatrix} c & a & b \\ c & b & a \\ c & a & b \end{vmatrix}^2

D

None

Answer

abcbcacab2\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}^2

Explanation

Solution

Let M=(abcbcacab)M = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}. Then det(M)=a(bca2)b(b2ac)+c(abc2)=3abca3b3c3\det(M) = a(bc - a^2) - b(b^2 - ac) + c(ab - c^2) = 3abc - a^3 - b^3 - c^3.

Let N=(acbcbabac)N = \begin{pmatrix} -a & c & b \\ c & -b & a \\ b & a & -c \end{pmatrix}. Then det(N)=a(bca2)c(c2ab)+b(ac+b2)=abc+a3+c3+abc+abc+b3=a3+b3+c3+3abc\det(N) = -a(bc - a^2) - c(-c^2 - ab) + b(ac + b^2) = -abc + a^3 + c^3 + abc + abc + b^3 = a^3 + b^3 + c^3 + 3abc.

MN=(a2+b2+c2abbc+caac+abbcab+bc+acb2c2+a2bc+caabac+ab+bcbcac+abc2+a2b2)MN = \begin{pmatrix} -a^2+b^2+c^2 & ab-bc+ca & ac+ab-bc \\ -ab+bc+ac & b^2-c^2+a^2 & bc+ca-ab \\ -ac+ab+bc & bc-ac+ab & c^2+a^2-b^2 \end{pmatrix}

Consider (abcbcacab)(acbcbabac)=(a2+bc+bcacb2+acab+abc2ab+c2+abbcbc+a2b2+acacac+ac+b2c2ab+abbc+a2bc)=(2bca22acb22abc2c2a2b2b2c2a2)\begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \begin{pmatrix} -a & c & b \\ c & -b & a \\ b & a & -c \end{pmatrix} = \begin{pmatrix} -a^2+bc+bc & ac-b^2+ac & ab+ab-c^2 \\ -ab+c^2+ab & bc-bc+a^2 & b^2+ac-ac \\ -ac+ac+b^2 & c^2-ab+ab & bc+a^2-bc \end{pmatrix} = \begin{pmatrix} 2bc-a^2 & 2ac-b^2 & 2ab-c^2 \\ c^2 & a^2 & b^2 \\ b^2 & c^2 & a^2 \end{pmatrix}

Δ=2bca2c2b2c22cab2a2b2a22abc2\Delta = \begin{vmatrix} 2bc-a^2 & c^2 & b^2 \\ c^2 & 2ca-b^2 & a^2 \\ b^2 & a^2 & 2ab-c^2 \end{vmatrix}

det(M)det(N)=(3abca3b3c3)(3abc+a3+b3+c3)=(3abc)2(a3+b3+c3)2\det(M) \det(N) = (3abc - a^3 - b^3 - c^3)(3abc + a^3 + b^3 + c^3) = (3abc)^2 - (a^3 + b^3 + c^3)^2. det(M)2=(3abca3b3c3)2=(a3+b3+c33abc)2\det(M)^2 = (3abc - a^3 - b^3 - c^3)^2 = (a^3 + b^3 + c^3 - 3abc)^2.

The determinant of the given matrix is (a3+b3+c33abc)2(a^3 + b^3 + c^3 - 3abc)^2.