Question
Question: Let $\Delta$=$\begin{vmatrix} 2bc-a^2 & c^2 & b^2 \\ c^2 & 2ca-b^2 & a^2 \\ b^2 & a^2 & 2ab-c^2 \end...
Let Δ=2bc−a2c2b2c22ca−b2a2b2a22ab−c2, then Δ can be expressed as

abcbcacab2
cabbcaabc2
cccababab2
None
abcbcacab2
Solution
Let M=abcbcacab. Then det(M)=a(bc−a2)−b(b2−ac)+c(ab−c2)=3abc−a3−b3−c3.
Let N=−acbc−baba−c. Then det(N)=−a(bc−a2)−c(−c2−ab)+b(ac+b2)=−abc+a3+c3+abc+abc+b3=a3+b3+c3+3abc.
MN=−a2+b2+c2−ab+bc+ac−ac+ab+bcab−bc+cab2−c2+a2bc−ac+abac+ab−bcbc+ca−abc2+a2−b2
Consider abcbcacab−acbc−baba−c=−a2+bc+bc−ab+c2+ab−ac+ac+b2ac−b2+acbc−bc+a2c2−ab+abab+ab−c2b2+ac−acbc+a2−bc=2bc−a2c2b22ac−b2a2c22ab−c2b2a2
Δ=2bc−a2c2b2c22ca−b2a2b2a22ab−c2
det(M)det(N)=(3abc−a3−b3−c3)(3abc+a3+b3+c3)=(3abc)2−(a3+b3+c3)2. det(M)2=(3abc−a3−b3−c3)2=(a3+b3+c3−3abc)2.
The determinant of the given matrix is (a3+b3+c3−3abc)2.