Question
Question: If the matrix $A = \begin{bmatrix} 0 & 2 \\ K & -1 \end{bmatrix}$ satisfies $A(A^3 + 3I) = 2I$, then...
If the matrix A=[0K2−1] satisfies A(A3+3I)=2I, then the value of K is

A
1/2
B
1
C
-1
D
-1/2
Answer
K = 1/2
Explanation
Solution
We are given:
A=[0K2−1]andA(A3+3I)=2I.This implies:
A4+3A=2I.Step 1. Compute A2:
A2=A⋅A=[0K2−1][0K2−1]=[2K−K−22K+1].Step 2. Compute A3=A2⋅A:
A3=[2K−K−22K+1][0K2−1]=[−2KK(2K+1)4K+2−4K−1].Step 3. Compute A4=A3⋅A:
A4=[−2KK(2K+1)4K+2−4K−1][0K2−1]=[4K2+2K−4K2−K−8K−24K2+6K+1].Step 4. Set up the equation A4+3A=2I:
A4+3A=[4K2+2K−4K2−K−8K−24K2+6K+1]+3[0K2−1] =[4K2+2K−4K2−K+3K−8K−2+64K2+6K+1−3]=[4K2+2K−4K2+2K−8K+44K2+6K−2].For the given equation to hold, we equate with 2I=[2002]:
- 4K2+2K=2
- −8K+4=0
- −4K2+2K=0
- 4K2+6K−2=2
Step 5. Solve Equation (2):
−8K+4=0⇒K=21.Substitute K=21 into the other equations to verify:
- Equation (1): 4(41)+2(21)=1+1=2.
- Equation (3): −4(41)+2(21)=−1+1=0.
- Equation (4): 4(41)+6(21)−2=1+3−2=2.
All conditions hold with K=21.