Solveeit Logo

Question

Question: If the matrix $A = \begin{bmatrix} 0 & 2 \\ K & -1 \end{bmatrix}$ satisfies $A(A^3 + 3I) = 2I$, then...

If the matrix A=[02K1]A = \begin{bmatrix} 0 & 2 \\ K & -1 \end{bmatrix} satisfies A(A3+3I)=2IA(A^3 + 3I) = 2I, then the value of KK is

A

1/2

B

1

C

-1

D

-1/2

Answer

K = 1/2

Explanation

Solution

We are given:

A=[02K1]andA(A3+3I)=2I.A = \begin{bmatrix} 0 & 2 \\ K & -1 \end{bmatrix} \quad \text{and} \quad A\left(A^3 + 3I\right)=2I.

This implies:

A4+3A=2I.A^4 + 3A = 2I.

Step 1. Compute A2A^2:

A2=AA=[02K1][02K1]=[2K2K2K+1].A^2 = A \cdot A = \begin{bmatrix} 0 & 2 \\ K & -1 \end{bmatrix}\begin{bmatrix} 0 & 2 \\ K & -1 \end{bmatrix} = \begin{bmatrix} 2K & -2 \\ -K & 2K+1 \end{bmatrix}.

Step 2. Compute A3=A2AA^3 = A^2 \cdot A:

A3=[2K2K2K+1][02K1]=[2K4K+2K(2K+1)4K1].A^3 = \begin{bmatrix} 2K & -2 \\ -K & 2K+1 \end{bmatrix}\begin{bmatrix} 0 & 2 \\ K & -1 \end{bmatrix} = \begin{bmatrix} -2K & 4K+2 \\ K(2K+1) & -4K-1 \end{bmatrix}.

Step 3. Compute A4=A3AA^4 = A^3 \cdot A:

A4=[2K4K+2K(2K+1)4K1][02K1]=[4K2+2K8K24K2K4K2+6K+1].A^4 = \begin{bmatrix} -2K & 4K+2 \\ K(2K+1) & -4K-1 \end{bmatrix}\begin{bmatrix} 0 & 2 \\ K & -1 \end{bmatrix} = \begin{bmatrix} 4K^2+2K & -8K-2 \\ -4K^2-K & 4K^2+6K+1 \end{bmatrix}.

Step 4. Set up the equation A4+3A=2IA^4 + 3A = 2I:

A4+3A=[4K2+2K8K24K2K4K2+6K+1]+3[02K1]A^4 + 3A = \begin{bmatrix} 4K^2+2K & -8K-2 \\ -4K^2-K & 4K^2+6K+1 \end{bmatrix} + 3\begin{bmatrix} 0 & 2 \\ K & -1 \end{bmatrix} =[4K2+2K8K2+64K2K+3K4K2+6K+13]=[4K2+2K8K+44K2+2K4K2+6K2].= \begin{bmatrix} 4K^2+2K & -8K-2+6 \\ -4K^2-K+3K & 4K^2+6K+1-3 \end{bmatrix} = \begin{bmatrix} 4K^2+2K & -8K+4 \\ -4K^2+2K & 4K^2+6K-2 \end{bmatrix}.

For the given equation to hold, we equate with 2I=[2002]2I = \begin{bmatrix}2 & 0 \\ 0 & 2\end{bmatrix}:

  1. 4K2+2K=24K^2+2K = 2
  2. 8K+4=0-8K+4 = 0
  3. 4K2+2K=0-4K^2+2K = 0
  4. 4K2+6K2=24K^2+6K-2 = 2

Step 5. Solve Equation (2):

8K+4=0K=12.-8K+4=0 \quad\Rightarrow\quad K=\frac{1}{2}.

Substitute K=12K=\frac{1}{2} into the other equations to verify:

  • Equation (1): 4(14)+2(12)=1+1=2.4\left(\frac{1}{4}\right) + 2\left(\frac{1}{2}\right)= 1+1=2.
  • Equation (3): 4(14)+2(12)=1+1=0.-4\left(\frac{1}{4}\right)+2\left(\frac{1}{2}\right)= -1+1=0.
  • Equation (4): 4(14)+6(12)2=1+32=2.4\left(\frac{1}{4}\right)+6\left(\frac{1}{2}\right)-2= 1+3-2=2.

All conditions hold with K=12K=\frac{1}{2}.