Solveeit Logo

Question

Question: For the probability distribution | x: | 0 | 1 | 2 | 3 | 4 | 5 | | :----- | :-- |...

For the probability distribution

x:012345
p(x) :k0.30.150.150.12 k

The expected value of X is

A

1.45

B

2.45

C

1.55

D

2.55

Answer

2.45

Explanation

Solution

To find the expected value, first determine the value of k using the fact that the sum of all probabilities must equal 1.

So, we have:

k+0.3+0.15+0.15+0.1+2k=1k + 0.3 + 0.15 + 0.15 + 0.1 + 2k = 1

Combining terms:

3k+0.7=13k + 0.7 = 1

Solving for k:

3k=0.33k = 0.3

k=0.1k = 0.1

Now that we have the value of k, we can calculate the expected value E(X)E(X) using the formula:

E(X)=xp(x)E(X) = \sum x \cdot p(x)

E(X)=(0k)+(10.3)+(20.15)+(30.15)+(40.1)+(52k)E(X) = (0 \cdot k) + (1 \cdot 0.3) + (2 \cdot 0.15) + (3 \cdot 0.15) + (4 \cdot 0.1) + (5 \cdot 2k)

Substitute k=0.1k = 0.1:

E(X)=(00.1)+(10.3)+(20.15)+(30.15)+(40.1)+(520.1)E(X) = (0 \cdot 0.1) + (1 \cdot 0.3) + (2 \cdot 0.15) + (3 \cdot 0.15) + (4 \cdot 0.1) + (5 \cdot 2 \cdot 0.1)

E(X)=0+0.3+0.3+0.45+0.4+1.0E(X) = 0 + 0.3 + 0.3 + 0.45 + 0.4 + 1.0

E(X)=2.45E(X) = 2.45

Thus, the expected value of X is 2.45.