Question
Question: If $y = f(x)$ defined parametrically by $x = 2t - |t - 1|$ and $y = 2t^2 + t |t|$, then...
If y=f(x) defined parametrically by x=2t−∣t−1∣ and y=2t2+t∣t∣, then

Answer
dxdy=⎩⎨⎧92(x+1)32(x+1)6(x−1)if x<−1if −1≤x<2if x≥2
Explanation
Solution
To find dxdy, we analyze the parametric equations by considering cases for t due to the absolute value functions.
Case 1: t≥1 x=2t−(t−1)=t+1⟹t=x−1 y=2t2+t(t)=3t2 dtdx=1, dtdy=6t dxdy=16t=6t=6(x−1) for x≥2.
Case 2: 0≤t<1 x=2t−(1−t)=3t−1⟹t=3x+1 y=2t2+t(t)=3t2 dtdx=3, dtdy=6t dxdy=36t=2t=2(3x+1)=32(x+1) for −1≤x<2.
Case 3: t<0 x=2t−(1−t)=3t−1⟹t=3x+1 y=2t2+t(−t)=t2 dtdx=3, dtdy=2t dxdy=32t=32(3x+1)=92(x+1) for x<−1.
Combining these cases gives the piecewise derivative.
