Solveeit Logo

Question

Question: If $y = f(x)$ defined parametrically by $x = 2t - |t - 1|$ and $y = 2t^2 + t |t|$, then...

If y=f(x)y = f(x) defined parametrically by x=2tt1x = 2t - |t - 1| and y=2t2+tty = 2t^2 + t |t|, then

Answer
dydx={2(x+1)9if x<12(x+1)3if 1x<26(x1)if x2\frac{dy}{dx} = \begin{cases} \frac{2(x+1)}{9} & \text{if } x < -1 \\ \frac{2(x+1)}{3} & \text{if } -1 \le x < 2 \\ 6(x-1) & \text{if } x \ge 2 \end{cases}
Explanation

Solution

To find dydx\frac{dy}{dx}, we analyze the parametric equations by considering cases for tt due to the absolute value functions.

Case 1: t1t \ge 1 x=2t(t1)=t+1    t=x1x = 2t - (t - 1) = t + 1 \implies t = x - 1 y=2t2+t(t)=3t2y = 2t^2 + t(t) = 3t^2 dxdt=1\frac{dx}{dt} = 1, dydt=6t\frac{dy}{dt} = 6t dydx=6t1=6t=6(x1)\frac{dy}{dx} = \frac{6t}{1} = 6t = 6(x - 1) for x2x \ge 2.

Case 2: 0t<10 \le t < 1 x=2t(1t)=3t1    t=x+13x = 2t - (1 - t) = 3t - 1 \implies t = \frac{x + 1}{3} y=2t2+t(t)=3t2y = 2t^2 + t(t) = 3t^2 dxdt=3\frac{dx}{dt} = 3, dydt=6t\frac{dy}{dt} = 6t dydx=6t3=2t=2(x+13)=2(x+1)3\frac{dy}{dx} = \frac{6t}{3} = 2t = 2\left(\frac{x + 1}{3}\right) = \frac{2(x + 1)}{3} for 1x<2-1 \le x < 2.

Case 3: t<0t < 0 x=2t(1t)=3t1    t=x+13x = 2t - (1 - t) = 3t - 1 \implies t = \frac{x + 1}{3} y=2t2+t(t)=t2y = 2t^2 + t(-t) = t^2 dxdt=3\frac{dx}{dt} = 3, dydt=2t\frac{dy}{dt} = 2t dydx=2t3=23(x+13)=2(x+1)9\frac{dy}{dx} = \frac{2t}{3} = \frac{2}{3}\left(\frac{x + 1}{3}\right) = \frac{2(x + 1)}{9} for x<1x < -1.

Combining these cases gives the piecewise derivative.