Solveeit Logo

Question

Question: If $f(x) = tan^{-1}x + \ln x$ then find $\frac{dy}{dx} @ x = \frac{\pi}{4}$ where $y = f^{-1}(x)$....

If f(x)=tan1x+lnxf(x) = tan^{-1}x + \ln x then find dydx@x=π4\frac{dy}{dx} @ x = \frac{\pi}{4} where y=f1(x)y = f^{-1}(x).

Answer

23\frac{2}{3}

Explanation

Solution

The problem asks us to find the derivative of the inverse function y=f1(x)y = f^{-1}(x) at a specific point x=π4x = \frac{\pi}{4}, given the function f(x)=tan1x+lnxf(x) = \tan^{-1}x + \ln x.

  1. Understand the relationship between a function and its inverse: If y=f1(x)y = f^{-1}(x), it means x=f(y)x = f(y).

  2. Apply the inverse function differentiation rule: Differentiating x=f(y)x = f(y) with respect to xx using the chain rule: ddx(x)=ddx(f(y))\frac{d}{dx}(x) = \frac{d}{dx}(f(y))

    1=f(y)dydx1 = f'(y) \frac{dy}{dx}

    Therefore, dydx=1f(y)\frac{dy}{dx} = \frac{1}{f'(y)}.

  3. Find the derivative of the original function f(x)f(x): Given f(x)=tan1x+lnxf(x) = \tan^{-1}x + \ln x. Differentiate f(x)f(x) with respect to xx: f(x)=ddx(tan1x)+ddx(lnx)f'(x) = \frac{d}{dx}(\tan^{-1}x) + \frac{d}{dx}(\ln x)

    f(x)=11+x2+1xf'(x) = \frac{1}{1+x^2} + \frac{1}{x}

  4. Find the corresponding value of yy for the given xx value: We need to find dydx\frac{dy}{dx} at x=π4x = \frac{\pi}{4}. This means we need to find the value of yy such that f(y)=π4f(y) = \frac{\pi}{4}. Substitute yy into f(x)f(x): f(y)=tan1y+lnyf(y) = \tan^{-1}y + \ln y Set f(y)=π4f(y) = \frac{\pi}{4}: tan1y+lny=π4\tan^{-1}y + \ln y = \frac{\pi}{4} By inspection, if we let y=1y=1: tan1(1)+ln(1)=π4+0=π4\tan^{-1}(1) + \ln(1) = \frac{\pi}{4} + 0 = \frac{\pi}{4}. So, when x=π4x = \frac{\pi}{4}, the corresponding value of yy is 11.

  5. Evaluate f(y)f'(y) at the found yy value: Substitute y=1y=1 into the expression for f(y)f'(y): f(1)=11+12+11f'(1) = \frac{1}{1+1^2} + \frac{1}{1}

    f(1)=12+1f'(1) = \frac{1}{2} + 1

    f(1)=32f'(1) = \frac{3}{2}

  6. Calculate dydx\frac{dy}{dx}: Using the inverse function differentiation rule: dydxx=π4=1f(1)=132=23\frac{dy}{dx} \bigg|_{x=\frac{\pi}{4}} = \frac{1}{f'(1)} = \frac{1}{\frac{3}{2}} = \frac{2}{3}.