Solveeit Logo

Question

Question: If $C = \{x \in \mathbb{R} : |x+1| \leq 3\}$ and $D = \{x \in \mathbb{R} : |x-1| > 2\}$, then which ...

If C={xR:x+13}C = \{x \in \mathbb{R} : |x+1| \leq 3\} and D={xR:x1>2}D = \{x \in \mathbb{R} : |x-1| > 2\}, then which of the following is true?

A

CD=[4,1)C - D = [-4,-1)

B

DC=R[4,3]D - C = \mathbb{R} - [-4,3]

C

CD=R(1,3)C \cup D = \mathbb{R} - (-1,3)

D

CD=(3,4]C \cap D = (3, 4]

Answer

(b)

Explanation

Solution

First, determine the interval representation of set CC. The inequality x+13|x+1| \leq 3 is equivalent to 3x+13-3 \leq x+1 \leq 3. Subtracting 1 from all parts, we get 31x31-3 - 1 \leq x \leq 3 - 1, which simplifies to 4x2-4 \leq x \leq 2. So, C=[4,2]C = [-4, 2].

Next, determine the interval representation of set DD. The inequality x1>2|x-1| > 2 is equivalent to x1>2x-1 > 2 or x1<2x-1 < -2.

Case 1: x1>2    x>2+1    x>3x-1 > 2 \implies x > 2+1 \implies x > 3. Case 2: x1<2    x<2+1    x<1x-1 < -2 \implies x < -2+1 \implies x < -1. So, D=(,1)(3,)D = (-\infty, -1) \cup (3, \infty).

Now, let's evaluate each option.

(a) CD=[4,1)C - D = [-4,-1) CDC - D is the set of elements in CC but not in DD. CD=[4,2]((,1)(3,))C - D = [-4, 2] \setminus ((-\infty, -1) \cup (3, \infty)). This is equivalent to the intersection of CC with the complement of DD. The complement of DD, DcD^c, is R((,1)(3,))=[1,3]\mathbb{R} \setminus ((-\infty, -1) \cup (3, \infty)) = [-1, 3]. So, CD=CDc=[4,2][1,3]C - D = C \cap D^c = [-4, 2] \cap [-1, 3]. The intersection of [4,2][-4, 2] and [1,3][-1, 3] is [1,2][-1, 2]. Thus, CD=[1,2]C - D = [-1, 2]. Option (a) states CD=[4,1)C - D = [-4,-1), which is incorrect.

(b) DC=R[4,3]D - C = \mathbb{R} - [-4,3] DCD - C is the set of elements in DD but not in CC. DC=((,1)(3,))[4,2]D - C = ((-\infty, -1) \cup (3, \infty)) \setminus [-4, 2]. This is equivalent to the intersection of DD with the complement of CC. The complement of CC, CcC^c, is R[4,2]=(,4)(2,)\mathbb{R} \setminus [-4, 2] = (-\infty, -4) \cup (2, \infty). So, DC=DCc=((,1)(3,))((,4)(2,))D - C = D \cap C^c = ((-\infty, -1) \cup (3, \infty)) \cap ((-\infty, -4) \cup (2, \infty)). We can find the intersection by distributing: DC=((,1)(,4))((,1)(2,))((3,)(,4))((3,)(2,))D - C = ((-\infty, -1) \cap (-\infty, -4)) \cup ((-\infty, -1) \cap (2, \infty)) \cup ((3, \infty) \cap (-\infty, -4)) \cup ((3, \infty) \cap (2, \infty)).

(,1)(,4)=(,4)(-\infty, -1) \cap (-\infty, -4) = (-\infty, -4). (,1)(2,)=(-\infty, -1) \cap (2, \infty) = \emptyset. (3,)(,4)=(3, \infty) \cap (-\infty, -4) = \emptyset. (3,)(2,)=(3,)(3, \infty) \cap (2, \infty) = (3, \infty).

So, DC=(,4)(3,)=(,4)(3,)D - C = (-\infty, -4) \cup \emptyset \cup \emptyset \cup (3, \infty) = (-\infty, -4) \cup (3, \infty).

Now let's evaluate the right side of option (b): R[4,3]\mathbb{R} - [-4,3]. R[4,3]\mathbb{R} - [-4,3] is the set of all real numbers excluding the closed interval [4,3][-4,3]. This means x<4x < -4 or x>3x > 3. So, R[4,3]=(,4)(3,)\mathbb{R} - [-4,3] = (-\infty, -4) \cup (3, \infty). Comparing DC=(,4)(3,)D - C = (-\infty, -4) \cup (3, \infty) with R[4,3]=(,4)(3,)\mathbb{R} - [-4,3] = (-\infty, -4) \cup (3, \infty), we see that they are equal. Thus, option (b) is true.

(c) CD=R(1,3)C \cup D = \mathbb{R} - (-1,3) CD=[4,2]((,1)(3,))C \cup D = [-4, 2] \cup ((-\infty, -1) \cup (3, \infty)). Combining the intervals: (,1)[4,2]=(,2](-\infty, -1) \cup [-4, 2] = (-\infty, 2]. So, CD=(,2](3,)C \cup D = (-\infty, 2] \cup (3, \infty). The right side of option (c) is R(1,3)\mathbb{R} - (-1,3), which is the set of all real numbers excluding the open interval (1,3)(-1,3). This means x1x \leq -1 or x3x \geq 3. So, R(1,3)=(,1][3,)\mathbb{R} - (-1,3) = (-\infty, -1] \cup [3, \infty). Comparing CD=(,2](3,)C \cup D = (-\infty, 2] \cup (3, \infty) with R(1,3)=(,1][3,)\mathbb{R} - (-1,3) = (-\infty, -1] \cup [3, \infty), we see that they are not equal. For example, x=0x=0 is in CDC \cup D but not in R(1,3)\mathbb{R} - (-1,3). Option (c) is incorrect.

(d) CD=(3,4]C \cap D = (3, 4] CD=[4,2]((,1)(3,))C \cap D = [-4, 2] \cap ((-\infty, -1) \cup (3, \infty)). CD=([4,2](,1))([4,2](3,))C \cap D = ([-4, 2] \cap (-\infty, -1)) \cup ([-4, 2] \cap (3, \infty)). [4,2](,1)=[4,1)[-4, 2] \cap (-\infty, -1) = [-4, -1). [4,2](3,)=[-4, 2] \cap (3, \infty) = \emptyset. So, CD=[4,1)=[4,1)C \cap D = [-4, -1) \cup \emptyset = [-4, -1). Option (d) states CD=(3,4]C \cap D = (3, 4], which is incorrect.

Based on the evaluation of all options, only option (b) is true.