Solveeit Logo

Question

Question: If $a_1, a_2 ... a_{10}$ are positive real numbers such that $(a_1.a_2.a_3 ... a_{10}) = 512$ then f...

If a1,a2...a10a_1, a_2 ... a_{10} are positive real numbers such that (a1.a2.a3...a10)=512(a_1.a_2.a_3 ... a_{10}) = 512 then find the min value of a1+a2+...+a9+2a10a_1 + a_2 + ... + a_9 + 2a_{10}.

Answer

20

Explanation

Solution

The problem asks for the minimum value of a1+a2+...+a9+2a10a_1 + a_2 + ... + a_9 + 2a_{10}, given that a1,a2,...,a10a_1, a_2, ..., a_{10} are positive real numbers and their product (a1.a2.a3...a10)=512(a_1.a_2.a_3 ... a_{10}) = 512.

We can use the AM-GM (Arithmetic Mean - Geometric Mean) inequality. For a set of nn positive real numbers x1,x2,...,xnx_1, x_2, ..., x_n, the AM-GM inequality states:

x1+x2+...+xnn(x1x2...xn)1/n\frac{x_1 + x_2 + ... + x_n}{n} \ge (x_1 x_2 ... x_n)^{1/n}

Equality holds when x1=x2=...=xnx_1 = x_2 = ... = x_n.

In this problem, we want to find the minimum value of the sum S=a1+a2+...+a9+2a10S = a_1 + a_2 + ... + a_9 + 2a_{10}. Let's consider these 10 terms as x1=a1,x2=a2,...,x9=a9,x10=2a10x_1 = a_1, x_2 = a_2, ..., x_9 = a_9, x_{10} = 2a_{10}.

Now, apply the AM-GM inequality to these 10 terms:

a1+a2+...+a9+2a1010(a1a2...a9(2a10))1/10\frac{a_1 + a_2 + ... + a_9 + 2a_{10}}{10} \ge (a_1 \cdot a_2 \cdot ... \cdot a_9 \cdot (2a_{10}))^{1/10}

Let's evaluate the product term inside the parenthesis:

P=a1a2...a9(2a10)P' = a_1 \cdot a_2 \cdot ... \cdot a_9 \cdot (2a_{10})

We can rewrite this product as:

P=2(a1a2...a9a10)P' = 2 \cdot (a_1 \cdot a_2 \cdot ... \cdot a_9 \cdot a_{10})

We are given that a1a2...a10=512a_1 \cdot a_2 \cdot ... \cdot a_{10} = 512. Substitute this value into the product PP':

P=2512=1024P' = 2 \cdot 512 = 1024

Now, substitute PP' back into the AM-GM inequality:

a1+a2+...+a9+2a1010(1024)1/10\frac{a_1 + a_2 + ... + a_9 + 2a_{10}}{10} \ge (1024)^{1/10}

We know that 1024=2101024 = 2^{10}. So, (1024)1/10=(210)1/10=2(1024)^{1/10} = (2^{10})^{1/10} = 2.

a1+a2+...+a9+2a10102\frac{a_1 + a_2 + ... + a_9 + 2a_{10}}{10} \ge 2

Multiply both sides by 10:

a1+a2+...+a9+2a1020a_1 + a_2 + ... + a_9 + 2a_{10} \ge 20

The minimum value of the expression is 20. The equality holds when all the terms in the AM-GM inequality are equal: a1=a2=...=a9=2a10a_1 = a_2 = ... = a_9 = 2a_{10}. Let a1=ka_1 = k. Then a1=a2=...=a9=ka_1 = a_2 = ... = a_9 = k and 2a10=k2a_{10} = k, which implies a10=k/2a_{10} = k/2. Substitute these values into the product condition: a1a2...a9a10=512a_1 \cdot a_2 \cdot ... \cdot a_9 \cdot a_{10} = 512 k9(k/2)=512k^9 \cdot (k/2) = 512 k10/2=512k^{10}/2 = 512 k10=1024k^{10} = 1024 k=(1024)1/10=2k = (1024)^{1/10} = 2.

So, the values for which the minimum occurs are: a1=a2=...=a9=2a_1 = a_2 = ... = a_9 = 2 a10=k/2=2/2=1a_{10} = k/2 = 2/2 = 1.

Let's verify the sum with these values: a1+...+a9+2a10=(9×2)+(2×1)=18+2=20a_1 + ... + a_9 + 2a_{10} = (9 \times 2) + (2 \times 1) = 18 + 2 = 20. This confirms that the minimum value is indeed 20.