Solveeit Logo

Question

Question: If $a \& b$ are rational numbers satisfying \[a + b\sqrt{75} = 7\bigl(\sqrt{108}-3\bigr)+\sqrt{27}...

If a&ba \& b are rational numbers satisfying
a+b75=7(1083)+27,a + b\sqrt{75} = 7\bigl(\sqrt{108}-3\bigr)+\sqrt{27},
then value of a&ba \& b respectively, are

A

a=7, b=9

B

a=45, b=-21

C

a=-21, b=9

D

a=21, b=9

Answer

a=21, b=9a=-21,\ b=9

Explanation

Solution

Step 1: Simplify the RHS

7(1083)+27=7(633)+33=42321+33=45321.7\bigl(\sqrt{108}-3\bigr)+\sqrt{27} =7\bigl(6\sqrt{3}-3\bigr)+3\sqrt{3} =42\sqrt{3}-21+3\sqrt{3} =45\sqrt{3}-21.

Step 2: Express LHS in terms of 3\sqrt{3}

75=53,\sqrt{75}=5\sqrt{3},

so

a+b75=a+5b3.a + b\sqrt{75}=a +5b\sqrt{3}.

Step 3: Equate rational and irrational parts
From

a+5b3=21+453,a +5b\sqrt{3}= -21 +45\sqrt{3},

we get the system:

  • Rational part: a=21a=-21
  • Irrational part: 5b=45    b=95b=45\implies b=9.

Hence, a=21, b=9.\boxed{a=-21,\ b=9}.