Solveeit Logo

Question

Question: If $4i + 7j + 8k, 2i + 3j + 4k$ and $2i + 5j + 7k$ are the position vectors of the vertices A, B and...

If 4i+7j+8k,2i+3j+4k4i + 7j + 8k, 2i + 3j + 4k and 2i+5j+7k2i + 5j + 7k are the position vectors of the vertices A, B and C respectively of triangle ABC, then the position vector of the point where the internal bisector of angle A meets BC is

A

2i^+133j^+6k^2\hat{i} + \frac{13}{3}\hat{j} + 6\hat{k}

B

2i^+5j^+7k^2\hat{i} + 5\hat{j} + 7\hat{k}

C

4i^+7j^+8k^4\hat{i} + 7\hat{j} + 8\hat{k}

D

2i^+3j^+4k^2\hat{i} + 3\hat{j} + 4\hat{k}

Answer

2i^+133j^+6k^2\hat{i} + \frac{13}{3}\hat{j} + 6\hat{k}

Explanation

Solution

The position vector of the point where the internal bisector of angle A meets BC can be found using the Angle Bisector Theorem and the section formula.

Let a\vec{a}, b\vec{b}, and c\vec{c} be the position vectors of vertices A, B, and C, respectively. Given: a=4i^+7j^+8k^\vec{a} = 4\hat{i} + 7\hat{j} + 8\hat{k} b=2i^+3j^+4k^\vec{b} = 2\hat{i} + 3\hat{j} + 4\hat{k} c=2i^+5j^+7k^\vec{c} = 2\hat{i} + 5\hat{j} + 7\hat{k}

Let D be the point on BC where the internal bisector of angle A meets BC. According to the Angle Bisector Theorem, D divides BC in the ratio AB:ACAB:AC.

First, calculate the lengths of sides AB and AC: AB=ba=(24)i^+(37)j^+(48)k^=2i^4j^4k^\vec{AB} = \vec{b} - \vec{a} = (2-4)\hat{i} + (3-7)\hat{j} + (4-8)\hat{k} = -2\hat{i} - 4\hat{j} - 4\hat{k} AB=AB=(2)2+(4)2+(4)2=4+16+16=36=6AB = |\vec{AB}| = \sqrt{(-2)^2 + (-4)^2 + (-4)^2} = \sqrt{4 + 16 + 16} = \sqrt{36} = 6.

AC=ca=(24)i^+(57)j^+(78)k^=2i^2j^k^\vec{AC} = \vec{c} - \vec{a} = (2-4)\hat{i} + (5-7)\hat{j} + (7-8)\hat{k} = -2\hat{i} - 2\hat{j} - \hat{k} AC=AC=(2)2+(2)2+(1)2=4+4+1=9=3AC = |\vec{AC}| = \sqrt{(-2)^2 + (-2)^2 + (-1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3.

The ratio BD:DC=AB:AC=6:3=2:1BD:DC = AB:AC = 6:3 = 2:1. Using the section formula for internal division, the position vector of D (d\vec{d}) is: d=1b+2c1+2\vec{d} = \frac{1 \cdot \vec{b} + 2 \cdot \vec{c}}{1+2} d=1(2i^+3j^+4k^)+2(2i^+5j^+7k^)3\vec{d} = \frac{1 \cdot (2\hat{i} + 3\hat{j} + 4\hat{k}) + 2 \cdot (2\hat{i} + 5\hat{j} + 7\hat{k})}{3} d=(2i^+3j^+4k^)+(4i^+10j^+14k^)3\vec{d} = \frac{(2\hat{i} + 3\hat{j} + 4\hat{k}) + (4\hat{i} + 10\hat{j} + 14\hat{k})}{3} d=(2+4)i^+(3+10)j^+(4+14)k^3\vec{d} = \frac{(2+4)\hat{i} + (3+10)\hat{j} + (4+14)\hat{k}}{3} d=6i^+13j^+18k^3\vec{d} = \frac{6\hat{i} + 13\hat{j} + 18\hat{k}}{3} d=2i^+133j^+6k^\vec{d} = 2\hat{i} + \frac{13}{3}\hat{j} + 6\hat{k}