Question
Question: If $4i + 7j + 8k, 2i + 3j + 4k$ and $2i + 5j + 7k$ are the position vectors of the vertices A, B and...
If 4i+7j+8k,2i+3j+4k and 2i+5j+7k are the position vectors of the vertices A, B and C respectively of triangle ABC, then the position vector of the point where the internal bisector of angle A meets BC is

2i^+313j^+6k^
2i^+5j^+7k^
4i^+7j^+8k^
2i^+3j^+4k^
2i^+313j^+6k^
Solution
The position vector of the point where the internal bisector of angle A meets BC can be found using the Angle Bisector Theorem and the section formula.
Let a, b, and c be the position vectors of vertices A, B, and C, respectively. Given: a=4i^+7j^+8k^ b=2i^+3j^+4k^ c=2i^+5j^+7k^
Let D be the point on BC where the internal bisector of angle A meets BC. According to the Angle Bisector Theorem, D divides BC in the ratio AB:AC.
First, calculate the lengths of sides AB and AC: AB=b−a=(2−4)i^+(3−7)j^+(4−8)k^=−2i^−4j^−4k^ AB=∣AB∣=(−2)2+(−4)2+(−4)2=4+16+16=36=6.
AC=c−a=(2−4)i^+(5−7)j^+(7−8)k^=−2i^−2j^−k^ AC=∣AC∣=(−2)2+(−2)2+(−1)2=4+4+1=9=3.
The ratio BD:DC=AB:AC=6:3=2:1. Using the section formula for internal division, the position vector of D (d) is: d=1+21⋅b+2⋅c d=31⋅(2i^+3j^+4k^)+2⋅(2i^+5j^+7k^) d=3(2i^+3j^+4k^)+(4i^+10j^+14k^) d=3(2+4)i^+(3+10)j^+(4+14)k^ d=36i^+13j^+18k^ d=2i^+313j^+6k^