Solveeit Logo

Question

Question: Find positive numbers, $x$, $y$ and $z$ such that \[x + 2y + 3z = 9\] and \[x^3 + 8y^3 + 27z^3...

Find positive numbers, xx, yy and zz such that
x+2y+3z=9x + 2y + 3z = 9
and
x3+8y3+27z3=18xyz.x^3 + 8y^3 + 27z^3 = 18\,x\,y\,z.

Answer

(x,y,z)=(3,32,1)(x,y,z) = \bigl(3,\tfrac{3}{2},1\bigr)

Explanation

Solution

Solution Outline

  1. Set a=x,b=2y,c=3z.a = x,\quad b = 2y,\quad c = 3z. Then the first equation becomes a+b+c=9.a + b + c = 9.
  2. Note that x3+8y3+27z3=a3+b3+c3,x^3 + 8y^3 + 27z^3 = a^3 + b^3 + c^3, and xyz=ab2c3=abc6.xyz = a\cdot\frac{b}{2}\cdot\frac{c}{3} = \frac{abc}{6}. Hence the second equation x3+8y3+27z3=18xyzx^3 + 8y^3 + 27z^3 = 18\,x\,y\,z becomes a3+b3+c3=18abc6=3abc.a^3 + b^3 + c^3 = 18\cdot\frac{abc}{6} = 3\,abc.
  3. Use the identity for three numbers: a3+b3+c33abc=12(a+b+c)[(ab)2+(bc)2+(ca)2].a^3 + b^3 + c^3 - 3abc = \tfrac12(a+b+c)\bigl[(a-b)^2 + (b-c)^2 + (c-a)^2\bigr]. For this to be zero with a+b+c=9>0a+b+c=9>0, we require (ab)2+(bc)2+(ca)2=0(a-b)^2 + (b-c)^2 + (c-a)^2 = 0 which implies a=b=c=93=3.a = b = c = \frac{9}{3} = 3.
  4. Recover (x,y,z)(x,y,z): x=a=3,2y=b=3    y=32,3z=c=3    z=1.x = a = 3,\quad 2y = b = 3\implies y = \tfrac32,\quad 3z = c = 3\implies z = 1.

Answer:

(x,y,z)=(3,32,1).(x,y,z) = \bigl(3,\tfrac{3}{2},1\bigr).