Solveeit Logo

Question

Question: If $x^2 + ax + 10 = 0$ and $x^2 + bx - 10 = 0$, have a common root, then $a^2 - b^2$ is equal to...

If x2+ax+10=0x^2 + ax + 10 = 0 and x2+bx10=0x^2 + bx - 10 = 0, have a common root, then a2b2a^2 - b^2 is equal to

A

10

B

20

C

30

D

40

Answer

40

Explanation

Solution

Let the common root of the two quadratic equations be α\alpha.

Since α\alpha is a common root, it must satisfy both equations:

  1. α2+aα+10=0\alpha^2 + a\alpha + 10 = 0
  2. α2+bα10=0\alpha^2 + b\alpha - 10 = 0

Subtracting equation (2) from equation (1): (α2+aα+10)(α2+bα10)=0(\alpha^2 + a\alpha + 10) - (\alpha^2 + b\alpha - 10) = 0

α2+aα+10α2bα+10=0\alpha^2 + a\alpha + 10 - \alpha^2 - b\alpha + 10 = 0

(ab)α+20=0(a - b)\alpha + 20 = 0

(ab)α=20(3)(a - b)\alpha = -20 \quad \ldots (3)

Adding equation (1) and equation (2): (α2+aα+10)+(α2+bα10)=0(\alpha^2 + a\alpha + 10) + (\alpha^2 + b\alpha - 10) = 0

2α2+aα+bα=02\alpha^2 + a\alpha + b\alpha = 0

2α2+(a+b)α=02\alpha^2 + (a + b)\alpha = 0

α(2α+a+b)=0\alpha(2\alpha + a + b) = 0

This implies two possibilities:

Case 1: α=0\alpha = 0

If α=0\alpha = 0, substitute it into equation (1):

02+a(0)+10=00^2 + a(0) + 10 = 0

10=010 = 0

This is a contradiction, so α\alpha cannot be 00.

Case 2: 2α+a+b=02\alpha + a + b = 0

From this, we get:

a+b=2α(4)a + b = -2\alpha \quad \ldots (4)

We need to find the value of a2b2a^2 - b^2. We know that a2b2=(ab)(a+b)a^2 - b^2 = (a - b)(a + b).

From equation (3), since α0\alpha \neq 0:

ab=20αa - b = -\frac{20}{\alpha}

Substitute the expressions for (ab)(a - b) and (a+b)(a + b) into the identity for a2b2a^2 - b^2:

a2b2=(20α)(2α)a^2 - b^2 = \left(-\frac{20}{\alpha}\right) (-2\alpha)

a2b2=(20)(2)ααa^2 - b^2 = \frac{(-20)(-2)\alpha}{\alpha}

a2b2=40ααa^2 - b^2 = \frac{40\alpha}{\alpha}

a2b2=40a^2 - b^2 = 40