Solveeit Logo

Question

Question: If $\log(x-y) - \log 5 - \frac{1}{2}\log x - \frac{1}{2}\log y = 0$ then $\frac{x}{y} + \frac{y}{x}...

If log(xy)log512logx12logy=0\log(x-y) - \log 5 - \frac{1}{2}\log x - \frac{1}{2}\log y = 0 then

xy+yx=\frac{x}{y} + \frac{y}{x} =

A

25

B

26

C

27

D

28

Answer

27

Explanation

Solution

The given logarithmic equation is log(xy)log512logx12logy=0\log(x-y) - \log 5 - \frac{1}{2}\log x - \frac{1}{2}\log y = 0.

Using logarithm properties logAlogB=log(A/B)\log A - \log B = \log(A/B) and clogA=log(Ac)c \log A = \log(A^c), and logA+logB=log(AB)\log A + \log B = \log(AB):

log(xy)log512(logx+logy)=0\log(x-y) - \log 5 - \frac{1}{2}(\log x + \log y) = 0

log(xy)log512log(xy)=0\log(x-y) - \log 5 - \frac{1}{2}\log(xy) = 0

log(xy)=log5+log((xy)1/2)\log(x-y) = \log 5 + \log((xy)^{1/2})

log(xy)=log(5xy)\log(x-y) = \log(5\sqrt{xy})

Equating the arguments:

xy=5xyx-y = 5\sqrt{xy}

For the logarithms to be defined, x>0x>0, y>0y>0, and xy>0x-y>0, which implies x>yx>y.

Divide the equation by yy (since y0y \neq 0):

xy1=5xy\frac{x}{y} - 1 = 5\sqrt{\frac{x}{y}}

Let t=xyt = \sqrt{\frac{x}{y}}. Since x>yx>y, t>1t>1. Substituting tt:

t21=5tt^2 - 1 = 5t

t25t1=0t^2 - 5t - 1 = 0

We need to find xy+yx\frac{x}{y} + \frac{y}{x}, which is t2+1t2t^2 + \frac{1}{t^2}.

Divide the quadratic equation by tt (since t0t \neq 0):

t51t=0t - 5 - \frac{1}{t} = 0

t1t=5t - \frac{1}{t} = 5

Square both sides:

(t1t)2=52\left(t - \frac{1}{t}\right)^2 = 5^2

t2+1t22=25t^2 + \frac{1}{t^2} - 2 = 25

t2+1t2=27t^2 + \frac{1}{t^2} = 27

Thus, xy+yx=27\frac{x}{y} + \frac{y}{x} = 27.