Solveeit Logo

Question

Question: If $\begin{vmatrix} 1 & a & a \\ b & 1 & b \\ c & c & 1 \end{vmatrix}=0$ where a,b,c are distinct an...

If 1aab1bcc1=0\begin{vmatrix} 1 & a & a \\ b & 1 & b \\ c & c & 1 \end{vmatrix}=0 where a,b,c are distinct and each \neq 1, then the absolute value of 1a1+1b1+1c1\frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1} is

A

2

B

4

C

7

D

12

Answer

2

Explanation

Solution

Given

1aab1bcc1=0.\begin{vmatrix} 1 & a & a\\ b & 1 & b\\ c & c & 1 \end{vmatrix} = 0.

Expanding the determinant (by any standard method) we get:

1abacbc+2abc=0.1 - ab - ac - bc + 2abc = 0.

Let

x=a1,y=b1,z=c1.x = a-1,\quad y = b-1,\quad z = c-1.

Then, a=x+1a=x+1, b=y+1b=y+1, c=z+1c=z+1. Substitute these into the equation and simplify; after cancellation the equation reduces to:

xy+yz+zx+2xyz=0.xy + yz + zx + 2xyz = 0.

Dividing by xyzxyz (none of x,y,zx,y,z is zero because a,b,c1a,b,c\neq1):

xy+yz+zxxyz+2=01x+1y+1z=2.\frac{xy+yz+zx}{xyz}+2 = 0 \quad\Rightarrow\quad \frac{1}{x}+\frac{1}{y}+\frac{1}{z} = -2.

Thus,

1a1+1b1+1c1=2=2.\left|\frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}\right| = |-2| = 2.