Solveeit Logo

Question

Question: Find the value of $\lambda + n$, where $$\lim_{x\to 0} \left( \frac{\cos^2 x - \cos x - e^x \cos x +...

Find the value of λ+n\lambda + n, where limx0(cos2xcosxexcosx+exx32xn)=λ(R{0});nN.\lim_{x\to 0} \left( \frac{\cos^2 x - \cos x - e^x \cos x + e^x - \frac{x^3}{2}}{x^n} \right) = \lambda (\in \mathbb{R} - \{0\}); n \in \mathbb{N}.

Answer

4.5

Explanation

Solution

Let the given limit be LL. L=limx0(cos2xcosxexcosx+exx32xn)L = \lim_{x\to 0} \left( \frac{\cos^2 x - \cos x - e^x \cos x + e^x - \frac{x^3}{2}}{x^n} \right) We are given that L=λL = \lambda, where λR{0}\lambda \in \mathbb{R} - \{0\}, and nNn \in \mathbb{N}. For the limit to be a finite non-zero value, the numerator must have a Taylor series expansion around x=0x=0 starting with a term proportional to xnx^n. The terms of order less than nn must cancel out.

Let the numerator be N(x)=cos2xcosxexcosx+exx32N(x) = \cos^2 x - \cos x - e^x \cos x + e^x - \frac{x^3}{2}. We use the Maclaurin series expansions for the functions involved: cosx=1x22!+x44!x66!+O(x8)=1x22+x424x6720+O(x8)\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + O(x^8) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + O(x^8) ex=1+x+x22!+x33!+x44!+x55!+x66!+O(x7)=1+x+x22+x36+x424+x5120+x6720+O(x7)e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + O(x^7) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \frac{x^6}{720} + O(x^7)

Expand each term in the numerator up to a sufficiently high order (let's aim for x6x^6 or x7x^7 since lower order terms are expected to cancel).

cos2x=1+cos(2x)2=12+12(1(2x)22!+(2x)44!(2x)66!+O(x8))\cos^2 x = \frac{1 + \cos(2x)}{2} = \frac{1}{2} + \frac{1}{2}\left(1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} - \frac{(2x)^6}{6!} + O(x^8)\right) =12+12(12x2+16x42464x6720+O(x8))= \frac{1}{2} + \frac{1}{2}\left(1 - 2x^2 + \frac{16x^4}{24} - \frac{64x^6}{720} + O(x^8)\right) =12+12x2+13x4245x6+O(x8)=1x2+13x4245x6+O(x8)= \frac{1}{2} + \frac{1}{2} - x^2 + \frac{1}{3}x^4 - \frac{2}{45}x^6 + O(x^8) = 1 - x^2 + \frac{1}{3}x^4 - \frac{2}{45}x^6 + O(x^8)

excosxe^x \cos x: We can multiply the series expansions: excosx=(1+x+x22+x36+x424+x5120+x6720+O(x7))(1x22+x424x6720+O(x8))e^x \cos x = \left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \frac{x^6}{720} + O(x^7)\right) \left(1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + O(x^8)\right) Collecting terms up to x6x^6: Constant: 1×1=11 \times 1 = 1 xx: x×1=xx \times 1 = x x2x^2: 1×(x22)+x22×1=x22+x22=01 \times (-\frac{x^2}{2}) + \frac{x^2}{2} \times 1 = -\frac{x^2}{2} + \frac{x^2}{2} = 0 x3x^3: x×(x22)+x36×1=x32+x36=2x36=x33x \times (-\frac{x^2}{2}) + \frac{x^3}{6} \times 1 = -\frac{x^3}{2} + \frac{x^3}{6} = -\frac{2x^3}{6} = -\frac{x^3}{3} x4x^4: 1×x424+x22×(x22)+x424×1=x424x44+x424=(16+124)x4=4x424=x461 \times \frac{x^4}{24} + \frac{x^2}{2} \times (-\frac{x^2}{2}) + \frac{x^4}{24} \times 1 = \frac{x^4}{24} - \frac{x^4}{4} + \frac{x^4}{24} = \left(\frac{1-6+1}{24}\right)x^4 = -\frac{4x^4}{24} = -\frac{x^4}{6} x5x^5: x×x424+x36×(x22)+x5120×1=x524x512+x5120=(510+1120)x5=4x5120=x530x \times \frac{x^4}{24} + \frac{x^3}{6} \times (-\frac{x^2}{2}) + \frac{x^5}{120} \times 1 = \frac{x^5}{24} - \frac{x^5}{12} + \frac{x^5}{120} = \left(\frac{5-10+1}{120}\right)x^5 = -\frac{4x^5}{120} = -\frac{x^5}{30} x6x^6: 1×(x6720)+x22×x424+x424×(x22)+x6720×1=x6720+x648x648+x6720=01 \times (-\frac{x^6}{720}) + \frac{x^2}{2} \times \frac{x^4}{24} + \frac{x^4}{24} \times (-\frac{x^2}{2}) + \frac{x^6}{720} \times 1 = -\frac{x^6}{720} + \frac{x^6}{48} - \frac{x^6}{48} + \frac{x^6}{720} = 0 So, excosx=1+xx33x46x530+O(x7)e^x \cos x = 1 + x - \frac{x^3}{3} - \frac{x^4}{6} - \frac{x^5}{30} + O(x^7)

Now substitute these expansions into N(x)N(x): N(x)=(1x2+13x4245x6+O(x8))N(x) = \left(1 - x^2 + \frac{1}{3}x^4 - \frac{2}{45}x^6 + O(x^8)\right) (1x22+x424x6720+O(x8))- \left(1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + O(x^8)\right) (1+xx33x46x530+O(x7))- \left(1 + x - \frac{x^3}{3} - \frac{x^4}{6} - \frac{x^5}{30} + O(x^7)\right) +(1+x+x22+x36+x424+x5120+x6720+O(x7))+ \left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \frac{x^6}{720} + O(x^7)\right) x32- \frac{x^3}{2}

Collect coefficients for each power of xx: Constant: 111+1=01 - 1 - 1 + 1 = 0 xx: 001+1=00 - 0 - 1 + 1 = 0 x2x^2: 1(12)0+12=1+12+12=0-1 - (-\frac{1}{2}) - 0 + \frac{1}{2} = -1 + \frac{1}{2} + \frac{1}{2} = 0 x3x^3: 00(13)+1612=13+1612=2+136=00 - 0 - (-\frac{1}{3}) + \frac{1}{6} - \frac{1}{2} = \frac{1}{3} + \frac{1}{6} - \frac{1}{2} = \frac{2+1-3}{6} = 0 x4x^4: 13124(16)+124=13124+16+124=13+16=2+16=36=12\frac{1}{3} - \frac{1}{24} - (-\frac{1}{6}) + \frac{1}{24} = \frac{1}{3} - \frac{1}{24} + \frac{1}{6} + \frac{1}{24} = \frac{1}{3} + \frac{1}{6} = \frac{2+1}{6} = \frac{3}{6} = \frac{1}{2} x5x^5: 00(130)+1120=130+1120=4+1120=5120=1240 - 0 - (-\frac{1}{30}) + \frac{1}{120} = \frac{1}{30} + \frac{1}{120} = \frac{4+1}{120} = \frac{5}{120} = \frac{1}{24} x6x^6: 245(1720)0+1720=245+1720+1720=32720+1720+1720=32+2720=30720=124-\frac{2}{45} - (-\frac{1}{720}) - 0 + \frac{1}{720} = -\frac{2}{45} + \frac{1}{720} + \frac{1}{720} = -\frac{32}{720} + \frac{1}{720} + \frac{1}{720} = \frac{-32+2}{720} = -\frac{30}{720} = -\frac{1}{24}

So, N(x)=12x4+124x5124x6+O(x7)N(x) = \frac{1}{2}x^4 + \frac{1}{24}x^5 - \frac{1}{24}x^6 + O(x^7).

The limit is L=limx0N(x)xn=limx012x4+124x5124x6+O(x7)xnL = \lim_{x\to 0} \frac{N(x)}{x^n} = \lim_{x\to 0} \frac{\frac{1}{2}x^4 + \frac{1}{24}x^5 - \frac{1}{24}x^6 + O(x^7)}{x^n}. For the limit to be a finite non-zero value λ\lambda, the lowest power of xx in the numerator must match the power of xx in the denominator. The lowest power of xx in N(x)N(x) is x4x^4. Thus, nn must be 4.

Substituting n=4n=4: L=limx012x4+124x5124x6+O(x7)x4=limx0(12+124x124x2+O(x3))L = \lim_{x\to 0} \frac{\frac{1}{2}x^4 + \frac{1}{24}x^5 - \frac{1}{24}x^6 + O(x^7)}{x^4} = \lim_{x\to 0} \left(\frac{1}{2} + \frac{1}{24}x - \frac{1}{24}x^2 + O(x^3)\right) As x0x \to 0, the limit is 12\frac{1}{2}. So, λ=12\lambda = \frac{1}{2}.

We are asked to find the value of λ+n\lambda + n. λ+n=12+4=4.5\lambda + n = \frac{1}{2} + 4 = 4.5.

Alternatively, we could use L'Hopital's rule, but the derivatives become increasingly complex. Let N(x)=cos2xcosxexcosx+exx32N(x) = \cos^2 x - \cos x - e^x \cos x + e^x - \frac{x^3}{2}. N(0)=cos20cos0e0cos0+e0032=1211×1+10=111+1=0N(0) = \cos^2 0 - \cos 0 - e^0 \cos 0 + e^0 - \frac{0^3}{2} = 1^2 - 1 - 1 \times 1 + 1 - 0 = 1 - 1 - 1 + 1 = 0. N(x)=2cosx(sinx)(sinx)(excosx+ex(sinx))+ex3x22N'(x) = 2\cos x (-\sin x) - (-\sin x) - (e^x \cos x + e^x (-\sin x)) + e^x - \frac{3x^2}{2} N(x)=2sinxcosx+sinxexcosx+exsinx+ex3x22N'(x) = -2\sin x \cos x + \sin x - e^x \cos x + e^x \sin x + e^x - \frac{3x^2}{2} N(0)=2(0)(1)+01(1)+1(0)+10=1+1=0N'(0) = -2(0)(1) + 0 - 1(1) + 1(0) + 1 - 0 = -1 + 1 = 0. N(x)=2(cos2xsin2x)+cosx(excosxexsinx+exsinx+excosx)+ex3xN''(x) = -2(\cos^2 x - \sin^2 x) + \cos x - (e^x \cos x - e^x \sin x + e^x \sin x + e^x \cos x) + e^x - 3x N(x)=2cos(2x)+cosx(2excosx)+ex3xN''(x) = -2\cos(2x) + \cos x - (2e^x \cos x) + e^x - 3x N(0)=2cos(0)+cos(0)2e0cos(0)+e00=2(1)+12(1)(1)+1=2+12+1=2N''(0) = -2\cos(0) + \cos(0) - 2e^0 \cos(0) + e^0 - 0 = -2(1) + 1 - 2(1)(1) + 1 = -2 + 1 - 2 + 1 = -2. Since N(0)0N''(0) \neq 0, the lowest power of xx in the numerator expansion should be x2x^2. However, our Taylor series expansion showed the lowest power is x4x^4. Let's recheck the derivatives.

N(x)=cos2xcosxexcosx+exx32N(x) = \cos^2 x - \cos x - e^x \cos x + e^x - \frac{x^3}{2} N(x)=2cosx(sinx)(sinx)(excosxexsinx)+ex3x22N'(x) = 2\cos x(-\sin x) - (-\sin x) - (e^x \cos x - e^x \sin x) + e^x - \frac{3x^2}{2} N(x)=sin(2x)+sinxexcosx+exsinx+ex3x22N'(x) = -\sin(2x) + \sin x - e^x \cos x + e^x \sin x + e^x - \frac{3x^2}{2} N(0)=0+01(1)+1(0)+10=1+1=0N'(0) = 0 + 0 - 1(1) + 1(0) + 1 - 0 = -1 + 1 = 0. Correct.

N(x)=2cos(2x)+cosx(excosxexsinx)+(exsinx+excosx)+ex3xN''(x) = -2\cos(2x) + \cos x - (e^x \cos x - e^x \sin x) + (e^x \sin x + e^x \cos x) + e^x - 3x N(x)=2cos(2x)+cosxexcosx+exsinx+exsinx+excosx+ex3xN''(x) = -2\cos(2x) + \cos x - e^x \cos x + e^x \sin x + e^x \sin x + e^x \cos x + e^x - 3x N(x)=2cos(2x)+cosx+2exsinx+ex3xN''(x) = -2\cos(2x) + \cos x + 2e^x \sin x + e^x - 3x N(0)=2cos(0)+cos(0)+2e0sin(0)+e00=2(1)+1+2(1)(0)+1=2+1+0+1=0N''(0) = -2\cos(0) + \cos(0) + 2e^0 \sin(0) + e^0 - 0 = -2(1) + 1 + 2(1)(0) + 1 = -2 + 1 + 0 + 1 = 0. Correct.

N(x)=2(sin(2x)2)sinx+(2exsinx+2excosx)+ex3N'''(x) = -2(-\sin(2x) \cdot 2) - \sin x + (2e^x \sin x + 2e^x \cos x) + e^x - 3 N(x)=4sin(2x)sinx+2exsinx+2excosx+ex3N'''(x) = 4\sin(2x) - \sin x + 2e^x \sin x + 2e^x \cos x + e^x - 3 N(0)=4sin(0)sin(0)+2e0sin(0)+2e0cos(0)+e03=00+0+2(1)(1)+13=2+13=0N'''(0) = 4\sin(0) - \sin(0) + 2e^0 \sin(0) + 2e^0 \cos(0) + e^0 - 3 = 0 - 0 + 0 + 2(1)(1) + 1 - 3 = 2 + 1 - 3 = 0. Correct.

N(4)(x)=4(cos(2x)2)cosx+(2exsinx+2excosx)+(2excosx2exsinx)+exN^{(4)}(x) = 4(\cos(2x) \cdot 2) - \cos x + (2e^x \sin x + 2e^x \cos x) + (2e^x \cos x - 2e^x \sin x) + e^x N(4)(x)=8cos(2x)cosx+4excosx+exN^{(4)}(x) = 8\cos(2x) - \cos x + 4e^x \cos x + e^x N(4)(0)=8cos(0)cos(0)+4e0cos(0)+e0=8(1)1+4(1)(1)+1=81+4+1=12N^{(4)}(0) = 8\cos(0) - \cos(0) + 4e^0 \cos(0) + e^0 = 8(1) - 1 + 4(1)(1) + 1 = 8 - 1 + 4 + 1 = 12.

Wait, according to the Taylor series N(x)=N(4)(0)4!x4+O(x5)N(x) = \frac{N^{(4)}(0)}{4!} x^4 + O(x^5). The coefficient of x4x^4 is 124!=1224=12\frac{12}{4!} = \frac{12}{24} = \frac{1}{2}. This matches the Taylor series expansion result.

The limit is L=limx0N(x)xnL = \lim_{x\to 0} \frac{N(x)}{x^n}. Since N(x)=12x4+O(x5)N(x) = \frac{1}{2}x^4 + O(x^5), for the limit to be a non-zero finite value, we must have n=4n=4. L=limx012x4+O(x5)x4=limx0(12+O(x))=12L = \lim_{x\to 0} \frac{\frac{1}{2}x^4 + O(x^5)}{x^4} = \lim_{x\to 0} (\frac{1}{2} + O(x)) = \frac{1}{2}. So, n=4n=4 and λ=12\lambda = \frac{1}{2}.

The value of λ+n=12+4=4.5\lambda + n = \frac{1}{2} + 4 = 4.5.

The final answer is λ+n=4.5\lambda + n = 4.5.

The final answer is 4.5\boxed{4.5}.