Solveeit Logo

Question

Question: Q.18 If $C = \sum_{k=1}^{35} \cos{(5k)^\circ}$ and $S = \sum_{k=1}^{36} \sin{(10k)^\circ}$ then find...

Q.18 If C=k=135cos(5k)C = \sum_{k=1}^{35} \cos{(5k)^\circ} and S=k=136sin(10k)S = \sum_{k=1}^{36} \sin{(10k)^\circ} then find (C2+S2)(C^2 + S^2).

Answer

0

Explanation

Solution

Explanation (Minimal):
For C=k=135cos(5k)C = \sum_{k=1}^{35} \cos(5k^\circ), using the formula

k=1ncoskθ=sin(nθ2)cos((n+1)θ2)sin(θ2),\sum_{k=1}^{n} \cos k\theta = \frac{\sin\left(\frac{n\theta}{2}\right)\cos\left(\frac{(n+1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)},

with n=35n=35 and θ=5\theta = 5^\circ gives

C=sin(87.5)cos(90)sin(2.5)=0(since cos(90)=0).C = \frac{\sin(87.5^\circ)\cos(90^\circ)}{\sin(2.5^\circ)} = 0 \quad (\text{since } \cos(90^\circ)=0).

Similarly, for

S=k=136sin(10k),S = \sum_{k=1}^{36} \sin(10k^\circ),

using the sum formula

k=1nsinkθ=sin(nθ2)sin((n+1)θ2)sin(θ2),\sum_{k=1}^{n} \sin k\theta = \frac{\sin\left(\frac{n\theta}{2}\right)\sin\left(\frac{(n+1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)},

with n=36n=36 and θ=10\theta = 10^\circ gives

S=sin(180)sin(185)sin(5)=0(since sin(180)=0).S = \frac{\sin(180^\circ)\sin(185^\circ)}{\sin(5^\circ)} = 0 \quad (\text{since } \sin(180^\circ)=0).

Thus,

C2+S2=02+02=0.C^2 + S^2 = 0^2 + 0^2 = 0.