Question
Question: Q.18 If $C = \sum_{k=1}^{35} \cos{(5k)^\circ}$ and $S = \sum_{k=1}^{36} \sin{(10k)^\circ}$ then find...
Q.18 If C=∑k=135cos(5k)∘ and S=∑k=136sin(10k)∘ then find (C2+S2).
Answer
0
Explanation
Solution
Explanation (Minimal):
For C=∑k=135cos(5k∘), using the formula
with n=35 and θ=5∘ gives
C=sin(2.5∘)sin(87.5∘)cos(90∘)=0(since cos(90∘)=0).Similarly, for
S=k=1∑36sin(10k∘),using the sum formula
k=1∑nsinkθ=sin(2θ)sin(2nθ)sin(2(n+1)θ),with n=36 and θ=10∘ gives
S=sin(5∘)sin(180∘)sin(185∘)=0(since sin(180∘)=0).Thus,
C2+S2=02+02=0.