Solveeit Logo

Question

Question: Let $z$ be a complex number satisfying $|z|^3 + 2z^2 + 4\overline{z} - 8 = 0$, where $\overline{z}$ ...

Let zz be a complex number satisfying z3+2z2+4z8=0|z|^3 + 2z^2 + 4\overline{z} - 8 = 0, where z\overline{z} denotes the complex conjugate of zz. Let the imaginary part of zz be nonzero.

Match each entry in List-I to the correct entries in List-II.

List-IList-II
(P) $z
(Q) $z-\overline{z}
(R) $z
(S) $z+1
(5) 7

The correct option is:

A

(P)→(1) (Q)→(3) (R)→(5) (S)→(4)

B

(P)→(2) (Q)→(1) (R)→(3) (S)→(5)

C

(P)→(2) (Q)→(4) (R)→(5) (S)→(1)

D

(P)→(2) (Q)→(3) (R)→(5) (S)→(4)

Answer

(P)→(2) (Q)→(1) (R)→(3) (S)→(5)

Explanation

Solution

  1. Write z=x+iyz = x + iy (y0y\ne0).

  2. The imaginary part of

    z3+2z2+4z8=0|z|^3 + 2z^2 + 4\overline{z} - 8 = 0

    gives: 4y(x1)=04y(x-1)=0x=1x=1.

  3. Substitute x=1x=1 into the real part:

    (1+y2)3/2+2(1y2)+48=0(1+y2)3/2=2(1+y2).(1+y^2)^{3/2} + 2(1-y^2) + 4 - 8 = 0 \quad \Longrightarrow \quad (1+y^2)^{3/2} = 2(1+y^2).

    Dividing both sides by (1+y2)(1+y^2) (since y20y^2\ge0) yields:

    1+y2=21+y2=4y2=3.\sqrt{1+y^2}=2 \quad \Longrightarrow \quad 1+y^2=4 \quad \Longrightarrow \quad y^2 = 3.

    Thus, z=1±i3z=1\pm i\sqrt{3}.

  4. Now determine each expression:

    • (P) z2|z|^2:

      z2=12+(3)2=1+3=4  matches (2) [4].|z|^2 = 1^2 + (\sqrt{3})^2 = 1+3 = 4 \quad \Rightarrow \; \text{matches (2) [4]}.
    • (Q) zz2|z-\overline{z}|^2:

      zz=2iy2iy2=4y2=43=12  matches (1) [12].z-\overline{z} = 2iy \quad \Longrightarrow \quad |2iy|^2 = 4y^2 = 4\cdot 3 = 12 \quad \Rightarrow \; \text{matches (1) [12]}.
    • (R) z2+z+z2|z|^2+|z+\overline{z}|^2:

      z+z=2x=2z+z2=4.z+\overline{z} = 2x = 2 \quad \Longrightarrow \quad |z+\overline{z}|^2 =4.

      So,

      4+4=8  matches (3) [8].4+4=8 \quad \Rightarrow \; \text{matches (3) [8]}.
    • (S) z+12|z+1|^2:

      z+1=(1+1)+iy=2+iy2+iy2=22+y2=4+3=7  matches (5) [7].z+1 = (1+1) + iy = 2 + iy \quad \Longrightarrow \quad |2+iy|^2 = 2^2+y^2 = 4+3=7 \quad \Rightarrow \; \text{matches (5) [7]}.
  5. Mapping: (P)→(2), (Q)→(1), (R)→(3), (S)→(5).