Solveeit Logo

Question

Question: A prism of refractive index $n_1$ and another prism of refractive index $n_2$ are stuck together (as...

A prism of refractive index n1n_1 and another prism of refractive index n2n_2 are stuck together (as shown in the figure). n1n_1 and n2n_2 depend on λ\lambda, the wavelength of light, according to the relation n1=1.2+10.8×1014λ2n_1 = 1.2 + \frac{10.8 \times 10^{-14}}{\lambda^2} and n2=1.45+1.8×1014λ2n_2 = 1.45 + \frac{1.8 \times 10^{-14}}{\lambda^2}

The wavelength for which rays incident at any angle on the interface BCBC pass through without bending at that interface will be ______ nm.

Answer

600 nm

Explanation

Solution

We require that light passes from one prism to the other without bending at the interface. This implies that the light sees no change in refractive index, i.e., n1=n2n_1 = n_2.

Given:

n1=1.2+10.8×1014λ2,n2=1.45+1.8×1014λ2.n_1 = 1.2 + \frac{10.8\times10^{-14}}{\lambda^2}, \quad n_2 = 1.45 + \frac{1.8\times10^{-14}}{\lambda^2}.

Setting n1=n2n_1 = n_2:

1.2+10.8×1014λ2=1.45+1.8×1014λ2.1.2 + \frac{10.8\times10^{-14}}{\lambda^2} = 1.45 + \frac{1.8\times10^{-14}}{\lambda^2}.

Rearrange:

10.8×10141.8×1014λ2=1.451.2.\frac{10.8\times10^{-14} - 1.8\times10^{-14}}{\lambda^2} = 1.45 - 1.2.

Simplify:

9.0×1014λ2=0.25.\frac{9.0\times10^{-14}}{\lambda^2} = 0.25.

Solve for λ2\lambda^2:

λ2=9.0×10140.25=36×1014=3.6×1013.\lambda^2 = \frac{9.0\times10^{-14}}{0.25} = 36\times10^{-14} = 3.6\times10^{-13}.

Taking the square root:

λ=3.6×1013=6.0×107m=600nm.\lambda = \sqrt{3.6\times10^{-13}} = 6.0\times10^{-7}\, \text{m} = 600\, \text{nm}.