Solveeit Logo

Question

Question: If $\alpha, \beta$ are the roots of $x^2-3x+1=0$ then the equation whose roots are $\left(\frac{1}{\...

If α,β\alpha, \beta are the roots of x23x+1=0x^2-3x+1=0 then the equation whose roots are (1α2,1β2)\left(\frac{1}{\alpha-2}, \frac{1}{\beta-2}\right) is

A

x2+x1=0x^2+x-1=0

B

x2+x+1=0x^2+x+1=0

C

x2x1=0x^2-x-1=0

D

None of these

Answer

x^2-x-1=0

Explanation

Solution

Let's find the quadratic equation whose roots are related to the roots of the given quadratic equation.

Given equation: x23x+1=0x^2 - 3x + 1 = 0 Let its roots be α\alpha and β\beta.

From Vieta's formulas for the given equation: Sum of roots: α+β=(coefficient of x)/(coefficient of x2)=(3)/1=3\alpha + \beta = -(\text{coefficient of } x) / (\text{coefficient of } x^2) = -(-3)/1 = 3 Product of roots: αβ=(constant term)/(coefficient of x2)=1/1=1\alpha \beta = (\text{constant term}) / (\text{coefficient of } x^2) = 1/1 = 1

The new roots are y1=1α2y_1 = \frac{1}{\alpha-2} and y2=1β2y_2 = \frac{1}{\beta-2}. Let the new quadratic equation be y2(Sum of new roots)y+(Product of new roots)=0y^2 - (\text{Sum of new roots})y + (\text{Product of new roots}) = 0.

Method 1: Using Sum and Product of New Roots

  1. Calculate the sum of the new roots (SS'): S=y1+y2=1α2+1β2S' = y_1 + y_2 = \frac{1}{\alpha-2} + \frac{1}{\beta-2} To add these fractions, find a common denominator: S=(β2)+(α2)(α2)(β2)S' = \frac{(\beta-2) + (\alpha-2)}{(\alpha-2)(\beta-2)} S=α+β4αβ2α2β+4S' = \frac{\alpha+\beta-4}{\alpha\beta - 2\alpha - 2\beta + 4} S=α+β4αβ2(α+β)+4S' = \frac{\alpha+\beta-4}{\alpha\beta - 2(\alpha+\beta) + 4}

    Now substitute the values α+β=3\alpha+\beta=3 and αβ=1\alpha\beta=1: S=3412(3)+4S' = \frac{3-4}{1 - 2(3) + 4} S=116+4S' = \frac{-1}{1 - 6 + 4} S=11S' = \frac{-1}{-1} S=1S' = 1

  2. Calculate the product of the new roots (PP'): P=y1y2=(1α2)(1β2)P' = y_1 y_2 = \left(\frac{1}{\alpha-2}\right) \left(\frac{1}{\beta-2}\right) P=1(α2)(β2)P' = \frac{1}{(\alpha-2)(\beta-2)} P=1αβ2α2β+4P' = \frac{1}{\alpha\beta - 2\alpha - 2\beta + 4} P=1αβ2(α+β)+4P' = \frac{1}{\alpha\beta - 2(\alpha+\beta) + 4}

    Now substitute the values α+β=3\alpha+\beta=3 and αβ=1\alpha\beta=1: P=112(3)+4P' = \frac{1}{1 - 2(3) + 4} P=116+4P' = \frac{1}{1 - 6 + 4} P=11P' = \frac{1}{-1} P=1P' = -1

  3. Form the new quadratic equation: The new equation is y2Sy+P=0y^2 - S'y + P' = 0. Substitute S=1S'=1 and P=1P'=-1: y2(1)y+(1)=0y^2 - (1)y + (-1) = 0 y2y1=0y^2 - y - 1 = 0

Method 2: Using Transformation of Roots

Let yy be a root of the new equation. The relationship between the old root xx (which can be α\alpha or β\beta) and the new root yy is given by: y=1x2y = \frac{1}{x-2}

We need to express xx in terms of yy: y(x2)=1y(x-2) = 1 yx2y=1yx - 2y = 1 yx=1+2yyx = 1 + 2y x=1+2yyx = \frac{1+2y}{y}

Now substitute this expression for xx into the original equation x23x+1=0x^2 - 3x + 1 = 0: (1+2yy)23(1+2yy)+1=0\left(\frac{1+2y}{y}\right)^2 - 3\left(\frac{1+2y}{y}\right) + 1 = 0

To eliminate the denominators, multiply the entire equation by y2y^2: (1+2y)23y(1+2y)+1y2=0(1+2y)^2 - 3y(1+2y) + 1 \cdot y^2 = 0

Expand and simplify: (1+4y+4y2)(3y+6y2)+y2=0(1 + 4y + 4y^2) - (3y + 6y^2) + y^2 = 0 1+4y+4y23y6y2+y2=01 + 4y + 4y^2 - 3y - 6y^2 + y^2 = 0

Combine like terms: (4y26y2+y2)+(4y3y)+1=0(4y^2 - 6y^2 + y^2) + (4y - 3y) + 1 = 0 (5y26y2)+y+1=0(5y^2 - 6y^2) + y + 1 = 0 y2+y+1=0-y^2 + y + 1 = 0

Multiply by 1-1 to make the leading coefficient positive: y2y1=0y^2 - y - 1 = 0

Both methods yield the same result.

Therefore, the correct option is (C) x2x1=0x^2-x-1=0.