Solveeit Logo

Question

Question: The expression $(\tan^4x + 2\tan^2x + 1) \times \frac{1}{1+\tan^2x}$ when $x = \frac{\pi}{12}$ can b...

The expression (tan4x+2tan2x+1)×11+tan2x(\tan^4x + 2\tan^2x + 1) \times \frac{1}{1+\tan^2x} when x=π12x = \frac{\pi}{12} can be equal to

A

4(23)4(2 - \sqrt{3})

B

4(2+1)4(\sqrt{2} + 1)

C

16cos2π1216\cos^2\frac{\pi}{12}

D

16sin2π1216\sin^2\frac{\pi}{12}

Answer

A, D

Explanation

Solution

The given expression is (tan4x+2tan2x+1)×11+tan2x(\tan^4x + 2\tan^2x + 1) \times \frac{1}{1+\tan^2x}.

  1. Simplify the first term: The term (tan4x+2tan2x+1)(\tan^4x + 2\tan^2x + 1) is a perfect square. Let A=tan2xA = \tan^2x. Then the expression becomes (A2+2A+1)=(A+1)2=(tan2x+1)2(A^2 + 2A + 1) = (A+1)^2 = (\tan^2x + 1)^2.

  2. Use trigonometric identity: Recall the identity 1+tan2x=sec2x1+\tan^2x = \sec^2x. So, the first term becomes (sec2x)2=sec4x(\sec^2x)^2 = \sec^4x. The second term is 11+tan2x=1sec2x\frac{1}{1+\tan^2x} = \frac{1}{\sec^2x}.

  3. Combine the simplified terms: The expression simplifies to sec4x×1sec2x=sec2x\sec^4x \times \frac{1}{\sec^2x} = \sec^2x.

  4. Evaluate at x=π12x = \frac{\pi}{12}: We need to find the value of sec2(π12)\sec^2(\frac{\pi}{12}). This is equivalent to 1cos2(π12)\frac{1}{\cos^2(\frac{\pi}{12})}. First, calculate cos(π12)\cos(\frac{\pi}{12}) (which is cos(15)\cos(15^\circ)): cos(15)=cos(4530)=cos45cos30+sin45sin30\cos(15^\circ) = \cos(45^\circ - 30^\circ) = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ =(22)(32)+(22)(12)=64+24=6+24= \left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right) = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}.

  5. Calculate cos2(π12)\cos^2(\frac{\pi}{12}): cos2(π12)=(6+24)2=(6)2+(2)2+26216\cos^2(\frac{\pi}{12}) = \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^2 = \frac{(\sqrt{6})^2 + (\sqrt{2})^2 + 2\sqrt{6}\sqrt{2}}{16} =6+2+21216=8+4316=4(2+3)16=2+34= \frac{6 + 2 + 2\sqrt{12}}{16} = \frac{8 + 4\sqrt{3}}{16} = \frac{4(2 + \sqrt{3})}{16} = \frac{2 + \sqrt{3}}{4}.

  6. Calculate sec2(π12)\sec^2(\frac{\pi}{12}): sec2(π12)=1cos2(π12)=12+34=42+3\sec^2(\frac{\pi}{12}) = \frac{1}{\cos^2(\frac{\pi}{12})} = \frac{1}{\frac{2 + \sqrt{3}}{4}} = \frac{4}{2 + \sqrt{3}}. Rationalize the denominator: 42+3×2323=4(23)22(3)2=4(23)43=4(23)1=4(23)\frac{4}{2 + \sqrt{3}} \times \frac{2 - \sqrt{3}}{2 - \sqrt{3}} = \frac{4(2 - \sqrt{3})}{2^2 - (\sqrt{3})^2} = \frac{4(2 - \sqrt{3})}{4 - 3} = \frac{4(2 - \sqrt{3})}{1} = 4(2 - \sqrt{3}).

Thus, sec2(π12)=4(23)\sec^2(\frac{\pi}{12}) = 4(2 - \sqrt{3}).

Now let's verify the options: (A) 4(23)4(2 - \sqrt{3}) - Matches our result.

(C) 16cos2π12=16×2+34=4(2+3)16\cos^2\frac{\pi}{12} = 16 \times \frac{2 + \sqrt{3}}{4} = 4(2 + \sqrt{3}). This is not 4(23)4(2 - \sqrt{3}).

(D) 16sin2π1216\sin^2\frac{\pi}{12}. Let's calculate sin2(π12)\sin^2(\frac{\pi}{12}). sin(15)=sin(4530)=sin45cos30cos45sin30\sin(15^\circ) = \sin(45^\circ - 30^\circ) = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ =(22)(32)(22)(12)=624= \left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) - \left(\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}. sin2(π12)=(624)2=(6)2+(2)226216\sin^2(\frac{\pi}{12}) = \left(\frac{\sqrt{6} - \sqrt{2}}{4}\right)^2 = \frac{(\sqrt{6})^2 + (\sqrt{2})^2 - 2\sqrt{6}\sqrt{2}}{16} =6+221216=84316=4(23)16=234= \frac{6 + 2 - 2\sqrt{12}}{16} = \frac{8 - 4\sqrt{3}}{16} = \frac{4(2 - \sqrt{3})}{16} = \frac{2 - \sqrt{3}}{4}. So, 16sin2π12=16×234=4(23)16\sin^2\frac{\pi}{12} = 16 \times \frac{2 - \sqrt{3}}{4} = 4(2 - \sqrt{3}). This also matches our result.

Since the question states "can be equal to", both (A) and (D) are correct.