Solveeit Logo

Question

Question: Let $M = \begin{bmatrix} x & 2x & 3x \\ f(x) & g(x) & h(x) \\ 0 & 1 & 1 \end{bmatrix}$ be a singular...

Let M=[x2x3xf(x)g(x)h(x)011]M = \begin{bmatrix} x & 2x & 3x \\ f(x) & g(x) & h(x) \\ 0 & 1 & 1 \end{bmatrix} be a singular matrix. If f(x)=ln(ex+1)f(x) = ln(e^x + 1) and g(x)=ln(ex1)g(x) = ln(e^x - 1), then the value of h'(ln 3) is

A

98\frac{9}{8}

B

94\frac{9}{4}

C

3

D

6

Answer

94\frac{9}{4}

Explanation

Solution

The given matrix is M=[x2x3xf(x)g(x)h(x)011]M = \begin{bmatrix} x & 2x & 3x \\ f(x) & g(x) & h(x) \\ 0 & 1 & 1 \end{bmatrix}. The matrix M is singular, which means its determinant is zero, i.e., det(M)=0\det(M) = 0. The determinant of M is calculated as:

det(M)=xg(x)h(x)112xf(x)h(x)01+3xf(x)g(x)01\det(M) = x \begin{vmatrix} g(x) & h(x) \\ 1 & 1 \end{vmatrix} - 2x \begin{vmatrix} f(x) & h(x) \\ 0 & 1 \end{vmatrix} + 3x \begin{vmatrix} f(x) & g(x) \\ 0 & 1 \end{vmatrix}

det(M)=x(g(x)1h(x)1)2x(f(x)1h(x)0)+3x(f(x)1g(x)0)\det(M) = x(g(x) \cdot 1 - h(x) \cdot 1) - 2x(f(x) \cdot 1 - h(x) \cdot 0) + 3x(f(x) \cdot 1 - g(x) \cdot 0)

det(M)=x(g(x)h(x))2xf(x)+3xf(x)\det(M) = x(g(x) - h(x)) - 2x f(x) + 3x f(x)

det(M)=x(g(x)h(x)+f(x))\det(M) = x(g(x) - h(x) + f(x))

Since det(M)=0\det(M) = 0, we have x(g(x)h(x)+f(x))=0x(g(x) - h(x) + f(x)) = 0.

The functions are f(x)=ln(ex+1)f(x) = \ln(e^x + 1) and g(x)=ln(ex1)g(x) = \ln(e^x - 1). The function g(x)g(x) is defined for ex1>0e^x - 1 > 0, which means ex>1e^x > 1, or x>0x > 0. The relation holds for x>0x > 0.

For x>0x > 0, we can divide by xx:

g(x)h(x)+f(x)=0g(x) - h(x) + f(x) = 0

h(x)=f(x)+g(x)h(x) = f(x) + g(x)

Substitute the expressions for f(x)f(x) and g(x)g(x):

h(x)=ln(ex+1)+ln(ex1)h(x) = \ln(e^x + 1) + \ln(e^x - 1)

Using the logarithm property lnA+lnB=ln(AB)\ln A + \ln B = \ln(AB):

h(x)=ln((ex+1)(ex1))h(x) = \ln((e^x + 1)(e^x - 1))

Using the difference of squares formula (a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2:

h(x)=ln((ex)212)=ln(e2x1)h(x) = \ln((e^x)^2 - 1^2) = \ln(e^{2x} - 1)

This expression for h(x)h(x) is valid for x>0x > 0.

Next, we need to find the derivative of h(x)h(x), denoted by h(x)h'(x).

h(x)=ln(e2x1)h(x) = \ln(e^{2x} - 1)

Using the chain rule, ddxln(u)=1ududx\frac{d}{dx} \ln(u) = \frac{1}{u} \frac{du}{dx}. Let u=e2x1u = e^{2x} - 1.

dudx=ddx(e2x1)=e2xddx(2x)0=e2x2=2e2x\frac{du}{dx} = \frac{d}{dx}(e^{2x} - 1) = e^{2x} \cdot \frac{d}{dx}(2x) - 0 = e^{2x} \cdot 2 = 2e^{2x}.

So, h(x)=1e2x12e2x=2e2xe2x1h'(x) = \frac{1}{e^{2x} - 1} \cdot 2e^{2x} = \frac{2e^{2x}}{e^{2x} - 1}.

Finally, we need to evaluate h(ln3)h'(\ln 3). Substitute x=ln3x = \ln 3 into the expression for h(x)h'(x). Note that ln3>0\ln 3 > 0, so it is in the domain of h(x)h'(x).

h(ln3)=2e2(ln3)e2(ln3)1h'(\ln 3) = \frac{2e^{2(\ln 3)}}{e^{2(\ln 3)} - 1}

Using the logarithm and exponent properties alnb=lnbaa \ln b = \ln b^a and elnc=ce^{\ln c} = c:

2ln3=ln32=ln92 \ln 3 = \ln 3^2 = \ln 9.

So, e2(ln3)=eln9=9e^{2(\ln 3)} = e^{\ln 9} = 9.

Substitute this value into the expression for h(ln3)h'(\ln 3):

h(ln3)=2991=188=94h'(\ln 3) = \frac{2 \cdot 9}{9 - 1} = \frac{18}{8} = \frac{9}{4}.

The value of h(ln3)h'(\ln 3) is 94\frac{9}{4}.