Solveeit Logo

Question

Question: If $\alpha = \int_{\frac{1}{2}}^{2} \frac{\tan^{-1} x}{2x^2 - 3x + 2} dx$, then the value of $\sqr...

If

α=122tan1x2x23x+2dx\alpha = \int_{\frac{1}{2}}^{2} \frac{\tan^{-1} x}{2x^2 - 3x + 2} dx,

then the value of 7tan(2α7π)\sqrt{7} \tan (\frac{2\alpha \sqrt{7}}{\pi}) is ______.

(Here, the inverse trigonometric function tan1x\tan^{-1} x assumes values in (π2,π2)(-\frac{\pi}{2}, \frac{\pi}{2}).)

Answer

21

Explanation

Solution

The integral is given by α=122tan1x2x23x+2dx\alpha = \int_{\frac{1}{2}}^{2} \frac{\tan^{-1} x}{2x^2 - 3x + 2} dx. Let the denominator be D(x)=2x23x+2D(x) = 2x^2 - 3x + 2. The limits of integration are 1/21/2 and 22. Notice that 1/2×2=11/2 \times 2 = 1. This suggests a substitution x=1/tx = 1/t. Let x=1/tx = 1/t, then dx=1/t2dtdx = -1/t^2 dt. When x=1/2x = 1/2, t=2t = 2. When x=2x = 2, t=1/2t = 1/2. Substituting these into the integral: α=21/2tan1(1/t)2(1/t)23(1/t)+2(1t2)dt\alpha = \int_{2}^{1/2} \frac{\tan^{-1} (1/t)}{2(1/t)^2 - 3(1/t) + 2} (-\frac{1}{t^2}) dt α=21/2tan1(1/t)(23t+2t2)/t2(1t2)dt\alpha = \int_{2}^{1/2} \frac{\tan^{-1} (1/t)}{(2 - 3t + 2t^2)/t^2} (-\frac{1}{t^2}) dt α=21/2tan1(1/t)2t23t+2(1)dt\alpha = \int_{2}^{1/2} \frac{\tan^{-1} (1/t)}{2t^2 - 3t + 2} (-1) dt α=1/22tan1(1/t)2t23t+2dt\alpha = \int_{1/2}^{2} \frac{\tan^{-1} (1/t)}{2t^2 - 3t + 2} dt. Replacing the dummy variable tt with xx, we get: α=1/22tan1(1/x)2x23x+2dx\alpha = \int_{1/2}^{2} \frac{\tan^{-1} (1/x)}{2x^2 - 3x + 2} dx.

Now we have two expressions for α\alpha: (1) α=1/22tan1x2x23x+2dx\alpha = \int_{1/2}^{2} \frac{\tan^{-1} x}{2x^2 - 3x + 2} dx (2) α=1/22tan1(1/x)2x23x+2dx\alpha = \int_{1/2}^{2} \frac{\tan^{-1} (1/x)}{2x^2 - 3x + 2} dx

Adding (1) and (2): 2α=1/22tan1x+tan1(1/x)2x23x+2dx2\alpha = \int_{1/2}^{2} \frac{\tan^{-1} x + \tan^{-1} (1/x)}{2x^2 - 3x + 2} dx. For x>0x > 0, we have tan1x+tan1(1/x)=π/2\tan^{-1} x + \tan^{-1} (1/x) = \pi/2. Since the integration interval is [1/2,2][1/2, 2], xx is always positive. 2α=1/22π/22x23x+2dx2\alpha = \int_{1/2}^{2} \frac{\pi/2}{2x^2 - 3x + 2} dx 2α=π21/2212x23x+2dx2\alpha = \frac{\pi}{2} \int_{1/2}^{2} \frac{1}{2x^2 - 3x + 2} dx α=π41/2212x23x+2dx\alpha = \frac{\pi}{4} \int_{1/2}^{2} \frac{1}{2x^2 - 3x + 2} dx.

Now we evaluate the integral I=1/2212x23x+2dxI = \int_{1/2}^{2} \frac{1}{2x^2 - 3x + 2} dx. Complete the square in the denominator: 2x23x+2=2(x232x+1)=2[(x34)2(34)2+1]=2[(x34)2916+1]=2[(x34)2+716]2x^2 - 3x + 2 = 2(x^2 - \frac{3}{2}x + 1) = 2[(x - \frac{3}{4})^2 - (\frac{3}{4})^2 + 1] = 2[(x - \frac{3}{4})^2 - \frac{9}{16} + 1] = 2[(x - \frac{3}{4})^2 + \frac{7}{16}]. So, I=1/2212[(x34)2+716]dx=121/221(x34)2+(74)2dxI = \int_{1/2}^{2} \frac{1}{2[(x - \frac{3}{4})^2 + \frac{7}{16}]} dx = \frac{1}{2} \int_{1/2}^{2} \frac{1}{(x - \frac{3}{4})^2 + (\frac{\sqrt{7}}{4})^2} dx. This integral is of the form 1u2+a2du=1atan1(ua)\int \frac{1}{u^2 + a^2} du = \frac{1}{a} \tan^{-1} (\frac{u}{a}). Here u=x34u = x - \frac{3}{4} and a=74a = \frac{\sqrt{7}}{4}. I=12[174tan1(x3474)]1/22=12[47tan1(4x37)]1/22=27[tan1(4x37)]1/22I = \frac{1}{2} \left[ \frac{1}{\frac{\sqrt{7}}{4}} \tan^{-1} \left( \frac{x - \frac{3}{4}}{\frac{\sqrt{7}}{4}} \right) \right]_{1/2}^{2} = \frac{1}{2} \left[ \frac{4}{\sqrt{7}} \tan^{-1} \left( \frac{4x - 3}{\sqrt{7}} \right) \right]_{1/2}^{2} = \frac{2}{\sqrt{7}} \left[ \tan^{-1} \left( \frac{4x - 3}{\sqrt{7}} \right) \right]_{1/2}^{2}.

Evaluate at the limits: I=27[tan1(4(2)37)tan1(4(1/2)37)]I = \frac{2}{\sqrt{7}} \left[ \tan^{-1} \left( \frac{4(2) - 3}{\sqrt{7}} \right) - \tan^{-1} \left( \frac{4(1/2) - 3}{\sqrt{7}} \right) \right] I=27[tan1(57)tan1(17)]I = \frac{2}{\sqrt{7}} \left[ \tan^{-1} \left( \frac{5}{\sqrt{7}} \right) - \tan^{-1} \left( \frac{-1}{\sqrt{7}} \right) \right]. Using tan1(y)=tan1(y)\tan^{-1}(-y) = -\tan^{-1}(y): I=27[tan1(57)+tan1(17)]I = \frac{2}{\sqrt{7}} \left[ \tan^{-1} \left( \frac{5}{\sqrt{7}} \right) + \tan^{-1} \left( \frac{1}{\sqrt{7}} \right) \right]. Using tan1A+tan1B=tan1(A+B1AB)\tan^{-1} A + \tan^{-1} B = \tan^{-1} \left( \frac{A + B}{1 - AB} \right) for AB<1AB < 1: A=57A = \frac{5}{\sqrt{7}}, B=17B = \frac{1}{\sqrt{7}}. AB=57<1AB = \frac{5}{7} < 1. tan1(57)+tan1(17)=tan1(5/7+1/71(5/7)(1/7))=tan1(6/715/7)=tan1(67×72)=tan1(37)\tan^{-1} \left( \frac{5}{\sqrt{7}} \right) + \tan^{-1} \left( \frac{1}{\sqrt{7}} \right) = \tan^{-1} \left( \frac{5/\sqrt{7} + 1/\sqrt{7}}{1 - (5/\sqrt{7})(1/\sqrt{7})} \right) = \tan^{-1} \left( \frac{6/\sqrt{7}}{1 - 5/7} \right) = \tan^{-1} \left( \frac{6}{\sqrt{7}} \times \frac{7}{2} \right) = \tan^{-1} (3\sqrt{7}). So, I=27tan1(37)I = \frac{2}{\sqrt{7}} \tan^{-1} (3\sqrt{7}).

Now substitute II back into the expression for α\alpha: α=π4I=π4×27tan1(37)=π27tan1(37)\alpha = \frac{\pi}{4} I = \frac{\pi}{4} \times \frac{2}{\sqrt{7}} \tan^{-1} (3\sqrt{7}) = \frac{\pi}{2\sqrt{7}} \tan^{-1} (3\sqrt{7}).

We need to find the value of 7tan(2α7π)\sqrt{7} \tan (\frac{2\alpha \sqrt{7}}{\pi}). Let's calculate the argument of the tangent function: 2α7π=2×(π27tan1(37))×7π=πtan1(37)π=tan1(37)\frac{2\alpha \sqrt{7}}{\pi} = \frac{2 \times (\frac{\pi}{2\sqrt{7}} \tan^{-1} (3\sqrt{7})) \times \sqrt{7}}{\pi} = \frac{\pi \tan^{-1} (3\sqrt{7})}{\pi} = \tan^{-1} (3\sqrt{7}).

The expression we need to evaluate is 7tan(tan1(37))\sqrt{7} \tan (\tan^{-1} (3\sqrt{7})). Since the range of tan1x\tan^{-1} x is (π/2,π/2)(-\pi/2, \pi/2), and 373\sqrt{7} is a real number, tan(tan1(37))=37\tan(\tan^{-1}(3\sqrt{7})) = 3\sqrt{7}. The value is 7×(37)=3×(7)2=3×7=21\sqrt{7} \times (3\sqrt{7}) = 3 \times (\sqrt{7})^2 = 3 \times 7 = 21.

The final answer is 21.