Question
Question: If $\alpha = \int_{\frac{1}{2}}^{2} \frac{\tan^{-1} x}{2x^2 - 3x + 2} dx$, then the value of $\sqr...
If
α=∫2122x2−3x+2tan−1xdx,
then the value of 7tan(π2α7) is ______.
(Here, the inverse trigonometric function tan−1x assumes values in (−2π,2π).)

21
Solution
The integral is given by α=∫2122x2−3x+2tan−1xdx. Let the denominator be D(x)=2x2−3x+2. The limits of integration are 1/2 and 2. Notice that 1/2×2=1. This suggests a substitution x=1/t. Let x=1/t, then dx=−1/t2dt. When x=1/2, t=2. When x=2, t=1/2. Substituting these into the integral: α=∫21/22(1/t)2−3(1/t)+2tan−1(1/t)(−t21)dt α=∫21/2(2−3t+2t2)/t2tan−1(1/t)(−t21)dt α=∫21/22t2−3t+2tan−1(1/t)(−1)dt α=∫1/222t2−3t+2tan−1(1/t)dt. Replacing the dummy variable t with x, we get: α=∫1/222x2−3x+2tan−1(1/x)dx.
Now we have two expressions for α: (1) α=∫1/222x2−3x+2tan−1xdx (2) α=∫1/222x2−3x+2tan−1(1/x)dx
Adding (1) and (2): 2α=∫1/222x2−3x+2tan−1x+tan−1(1/x)dx. For x>0, we have tan−1x+tan−1(1/x)=π/2. Since the integration interval is [1/2,2], x is always positive. 2α=∫1/222x2−3x+2π/2dx 2α=2π∫1/222x2−3x+21dx α=4π∫1/222x2−3x+21dx.
Now we evaluate the integral I=∫1/222x2−3x+21dx. Complete the square in the denominator: 2x2−3x+2=2(x2−23x+1)=2[(x−43)2−(43)2+1]=2[(x−43)2−169+1]=2[(x−43)2+167]. So, I=∫1/222[(x−43)2+167]1dx=21∫1/22(x−43)2+(47)21dx. This integral is of the form ∫u2+a21du=a1tan−1(au). Here u=x−43 and a=47. I=21[471tan−1(47x−43)]1/22=21[74tan−1(74x−3)]1/22=72[tan−1(74x−3)]1/22.
Evaluate at the limits: I=72[tan−1(74(2)−3)−tan−1(74(1/2)−3)] I=72[tan−1(75)−tan−1(7−1)]. Using tan−1(−y)=−tan−1(y): I=72[tan−1(75)+tan−1(71)]. Using tan−1A+tan−1B=tan−1(1−ABA+B) for AB<1: A=75, B=71. AB=75<1. tan−1(75)+tan−1(71)=tan−1(1−(5/7)(1/7)5/7+1/7)=tan−1(1−5/76/7)=tan−1(76×27)=tan−1(37). So, I=72tan−1(37).
Now substitute I back into the expression for α: α=4πI=4π×72tan−1(37)=27πtan−1(37).
We need to find the value of 7tan(π2α7). Let's calculate the argument of the tangent function: π2α7=π2×(27πtan−1(37))×7=ππtan−1(37)=tan−1(37).
The expression we need to evaluate is 7tan(tan−1(37)). Since the range of tan−1x is (−π/2,π/2), and 37 is a real number, tan(tan−1(37))=37. The value is 7×(37)=3×(7)2=3×7=21.
The final answer is 21.