Solveeit Logo

Question

Question: Let functions $f$ and $g$ are defined as $f(x) = \lim_{h\to0} \frac{\sin(x+3h)-3\sin(x+2h)+3\sin(x+...

Let functions ff and gg are defined as

f(x)=limh0sin(x+3h)3sin(x+2h)+3sin(x+h)sinxh(tan(x+2h)2tan(x+h)+tanx)f(x) = \lim_{h\to0} \frac{\sin(x+3h)-3\sin(x+2h)+3\sin(x+h)-\sin x}{h(\tan(x+2h)-2\tan(x+h)+\tan x)} and

g(x)=1x(1+1x)1xf(11x)sin11xsec311xg(x) = \frac{1-x(1+|1-x|)}{|1-x|} f(\frac{1}{1-x}) \sin \frac{1}{1-x} \sec^3 \frac{1}{1-x}.

Then which of the following options is/are correct?

A

limx1+g(x)\lim_{x\to1^+} g(x) does not exists

B

limx1g(x)\lim_{x\to1^-} g(x) does not exists

C

limx1+g(x)=0\lim_{x\to1^+} g(x) = 0

D

limx1g(x)=0\lim_{x\to1^-} g(x) = 0

Answer

(A), (D)

Explanation

Solution

The function f(x)f(x) is given by f(x)=limh0sin(x+3h)3sin(x+2h)+3sin(x+h)sinxh(tan(x+2h)2tan(x+h)+tanx)f(x) = \lim_{h\to0} \frac{\sin(x+3h)-3\sin(x+2h)+3\sin(x+h)-\sin x}{h(\tan(x+2h)-2\tan(x+h)+\tan x)}.

The numerator is the third forward difference of sinx\sin x with step size hh, evaluated at xx. Using the Taylor series expansion of sin(x+kh)\sin(x+kh) around h=0h=0, sin(x+kh)=sinx+khcosx(kh)22sinx(kh)36cosx+O(h4)\sin(x+kh) = \sin x + kh\cos x - \frac{(kh)^2}{2}\sin x - \frac{(kh)^3}{6}\cos x + O(h^4).

Numerator = (sinx+3hcosx9h22sinx27h36cosx)3(sinx+2hcosx4h22sinx8h36cosx)+3(sinx+hcosxh22sinxh36cosx)sinx+O(h4)(\sin x + 3h\cos x - \frac{9h^2}{2}\sin x - \frac{27h^3}{6}\cos x) - 3(\sin x + 2h\cos x - \frac{4h^2}{2}\sin x - \frac{8h^3}{6}\cos x) + 3(\sin x + h\cos x - \frac{h^2}{2}\sin x - \frac{h^3}{6}\cos x) - \sin x + O(h^4) =(13+31)sinx+(36+3)hcosx+(92+12232)h2sinx+(276+24636)h3cosx+O(h4)= (1-3+3-1)\sin x + (3-6+3)h\cos x + (-\frac{9}{2}+\frac{12}{2}-\frac{3}{2})h^2\sin x + (-\frac{27}{6}+\frac{24}{6}-\frac{3}{6})h^3\cos x + O(h^4) =0+0+066h3cosx+O(h4)=h3cosx+O(h4)= 0 + 0 + 0 - \frac{6}{6}h^3\cos x + O(h^4) = -h^3\cos x + O(h^4).

The term in the denominator inside the parenthesis is the second forward difference of tanx\tan x with step size hh, evaluated at xx. Using the Taylor series expansion of tan(x+kh)\tan(x+kh) around h=0h=0, tan(x+kh)=tanx+khsec2x+(kh)22(2sec2xtanx)+O(h3)\tan(x+kh) = \tan x + kh\sec^2 x + \frac{(kh)^2}{2}(2\sec^2 x \tan x) + O(h^3).

Denominator term = (tanx+2hsec2x+4h22(2sec2xtanx))2(tanx+hsec2x+h22(2sec2xtanx))+tanx+O(h3)(\tan x + 2h\sec^2 x + \frac{4h^2}{2}(2\sec^2 x \tan x)) - 2(\tan x + h\sec^2 x + \frac{h^2}{2}(2\sec^2 x \tan x)) + \tan x + O(h^3) =(12+1)tanx+(22)hsec2x+(4222)h2(2sec2xtanx)+O(h3)= (1-2+1)\tan x + (2-2)h\sec^2 x + (\frac{4}{2}-\frac{2}{2})h^2(2\sec^2 x \tan x) + O(h^3) =0+0+h2(2sec2xtanx)+O(h3)=2h2sec2xtanx+O(h3)= 0 + 0 + h^2(2\sec^2 x \tan x) + O(h^3) = 2h^2\sec^2 x \tan x + O(h^3).

So, the denominator is h(2h2sec2xtanx+O(h3))=2h3sec2xtanx+O(h4)h(2h^2\sec^2 x \tan x + O(h^3)) = 2h^3\sec^2 x \tan x + O(h^4). f(x)=limh0h3cosx+O(h4)2h3sec2xtanx+O(h4)=cosx2sec2xtanx=cosx21cos2xsinxcosx=cos4x2sinxf(x) = \lim_{h\to0} \frac{-h^3\cos x + O(h^4)}{2h^3\sec^2 x \tan x + O(h^4)} = \frac{-\cos x}{2\sec^2 x \tan x} = \frac{-\cos x}{2 \frac{1}{\cos^2 x} \frac{\sin x}{\cos x}} = \frac{-\cos^4 x}{2\sin x}.

Now consider g(x)=1x(1+1x)1xf(11x)sin11xsec311xg(x) = \frac{1-x(1+|1-x|)}{|1-x|} f(\frac{1}{1-x}) \sin \frac{1}{1-x} \sec^3 \frac{1}{1-x}.

Case 1: x1+x \to 1^+. Then x>1x > 1, so 1x<01-x < 0 and 1x=(1x)=x1|1-x| = -(1-x) = x-1. 1x(1+1x)1x=1x(1+x1)x1=1x2x1=(1x)(1+x)(1x)=(1+x)\frac{1-x(1+|1-x|)}{|1-x|} = \frac{1-x(1+x-1)}{x-1} = \frac{1-x^2}{x-1} = \frac{(1-x)(1+x)}{-(1-x)} = -(1+x) for x1x \neq 1.

Let y=11xy = \frac{1}{1-x}. As x1+x \to 1^+, 1x01-x \to 0^-, so yy \to -\infty. f(y)=cos4y2sinyf(y) = \frac{-\cos^4 y}{2\sin y}. g(x)=(1+x)cos4y2sinysinysec3y=(1+x)cos4y2sinysiny1cos3y=(1+x)cosy2g(x) = -(1+x) \frac{-\cos^4 y}{2\sin y} \sin y \sec^3 y = (1+x) \frac{\cos^4 y}{2\sin y} \sin y \frac{1}{\cos^3 y} = (1+x) \frac{\cos y}{2}.

limx1+g(x)=limx1+(1+x)cos(11x)2\lim_{x\to1^+} g(x) = \lim_{x\to1^+} (1+x) \frac{\cos(\frac{1}{1-x})}{2}. Let y=11xy = \frac{1}{1-x}. As x1+x \to 1^+, yy \to -\infty. We need to evaluate limy(1+(11y))cosy2=limy(21y)cosy2\lim_{y\to-\infty} (1+ (1-\frac{1}{y})) \frac{\cos y}{2} = \lim_{y\to-\infty} (2-\frac{1}{y}) \frac{\cos y}{2}.

Since limy(21y)=2\lim_{y\to-\infty} (2-\frac{1}{y}) = 2 and cosy\cos y oscillates between -1 and 1 as yy \to -\infty, limycosy\lim_{y\to-\infty} \cos y does not exist. Therefore, limy(21y)cosy2\lim_{y\to-\infty} (2-\frac{1}{y}) \frac{\cos y}{2} does not exist. Thus, limx1+g(x)\lim_{x\to1^+} g(x) does not exist.

Case 2: x1x \to 1^-. Then x<1x < 1, so 1x>01-x > 0 and 1x=1x|1-x| = 1-x. 1x(1+1x)1x=1x(1+1x)1x=1x(2x)1x=12x+x21x=(1x)21x=1x\frac{1-x(1+|1-x|)}{|1-x|} = \frac{1-x(1+1-x)}{1-x} = \frac{1-x(2-x)}{1-x} = \frac{1-2x+x^2}{1-x} = \frac{(1-x)^2}{1-x} = 1-x for x1x \neq 1.

Let y=11xy = \frac{1}{1-x}. As x1x \to 1^-, 1x0+1-x \to 0^+, so y+y \to +\infty. f(y)=cos4y2sinyf(y) = \frac{-\cos^4 y}{2\sin y}. g(x)=(1x)cos4y2sinysinysec3y=(1x)cos4y21cos3y=(1x)cosy2g(x) = (1-x) \frac{-\cos^4 y}{2\sin y} \sin y \sec^3 y = (1-x) \frac{-\cos^4 y}{2} \frac{1}{\cos^3 y} = (1-x) \frac{-\cos y}{2}.

limx1g(x)=limx1(1x)cos(11x)2\lim_{x\to1^-} g(x) = \lim_{x\to1^-} (1-x) \frac{-\cos(\frac{1}{1-x})}{2}. Let y=11xy = \frac{1}{1-x}. As x1x \to 1^-, y+y \to +\infty. We need to evaluate limy+1ycosy2=limy+cosy2y\lim_{y\to+\infty} \frac{1}{y} \frac{-\cos y}{2} = \lim_{y\to+\infty} -\frac{\cos y}{2y}.

Since 1cosy1-1 \le \cos y \le 1, we have 12ycosy2y12y-\frac{1}{2y} \le -\frac{\cos y}{2y} \le \frac{1}{2y} for y>0y > 0. As y+y \to +\infty, 12y0\frac{1}{2y} \to 0 and 12y0-\frac{1}{2y} \to 0. By the Squeeze Theorem, limy+cosy2y=0\lim_{y\to+\infty} -\frac{\cos y}{2y} = 0. Thus, limx1g(x)=0\lim_{x\to1^-} g(x) = 0.

Based on the limits: (A) limx1+g(x)\lim_{x\to1^+} g(x) does not exist. This is correct. (B) limx1g(x)\lim_{x\to1^-} g(x) does not exist. This is incorrect, the limit is 0. (C) limx1+g(x)=0\lim_{x\to1^+} g(x) = 0. This is incorrect, the limit does not exist. (D) limx1g(x)=0\lim_{x\to1^-} g(x) = 0. This is correct.

The correct options are (A) and (D).