Solveeit Logo

Question

Question: Given two series S₁ = 1 - $\frac{1}{2}$ + $\frac{1}{3}$ - $\frac{1}{4}$ +.....+ $\frac{1}{2019}$ and...

Given two series S₁ = 1 - 12\frac{1}{2} + 13\frac{1}{3} - 14\frac{1}{4} +.....+ 12019\frac{1}{2019} and S₂ = 11010\frac{1}{1010} + 11011\frac{1}{1011} + 11012\frac{1}{1012} +.....+ 12019\frac{1}{2019}, then

A

S₁ < S₂

B

S₁ > S₂

C

S₁ = S₂

D

S₁+S₂ < 2

Answer

C

Explanation

Solution

The series S₁ can be written as: S1=112+1314++12019S₁ = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2019}

We can rewrite S₁ by grouping terms: S1=(1+13+15++12019)(12+14+16++12018)S₁ = (1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2019}) - (\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots + \frac{1}{2018})

To relate this to the harmonic series (Hn=1+12+13++1nH_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}), we can add and subtract the even terms: S1=(1+12+13+14++12019)2(12+14++12018)S₁ = (1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2019}) - 2(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2018}) S1=H2019212(1+12++11009)S₁ = H_{2019} - 2 \cdot \frac{1}{2} (1 + \frac{1}{2} + \dots + \frac{1}{1009}) S1=H2019H1009S₁ = H_{2019} - H_{1009}

Now, expanding H2019H1009H_{2019} - H_{1009}: H2019=(1+12++11009)+(11010+11011++12019)H_{2019} = (1 + \frac{1}{2} + \dots + \frac{1}{1009}) + (\frac{1}{1010} + \frac{1}{1011} + \dots + \frac{1}{2019}) H1009=1+12++11009H_{1009} = 1 + \frac{1}{2} + \dots + \frac{1}{1009} So, H2019H1009=(11010+11011++12019)H_{2019} - H_{1009} = (\frac{1}{1010} + \frac{1}{1011} + \dots + \frac{1}{2019}).

This is precisely the series S₂. Thus, S1=S2S₁ = S₂.

Now consider S1+S2<2S₁ + S₂ < 2. Since S1=S2S₁ = S₂, this inequality becomes 2S1<22S₁ < 2, or S1<1S₁ < 1. Let's check if S1<1S₁ < 1: S1=1(1213)(1415)(1201812019)S₁ = 1 - (\frac{1}{2} - \frac{1}{3}) - (\frac{1}{4} - \frac{1}{5}) - \dots - (\frac{1}{2018} - \frac{1}{2019}) Each term in parentheses is positive, e.g., (1213)=16(\frac{1}{2} - \frac{1}{3}) = \frac{1}{6}. Therefore, S1=1(a sum of positive terms)S₁ = 1 - (\text{a sum of positive terms}), which implies S1<1S₁ < 1. Consequently, S1+S2<2S₁ + S₂ < 2 is also true.

Both options (C) and (D) are correct. However, option (C) establishes the direct equality between the two series, which is the primary relationship derived.