Solveeit Logo

Question

Question: Let $f(x) = \int_{x}^{x+1} sin(e^t) dt$ then...

Let f(x)=xx+1sin(et)dtf(x) = \int_{x}^{x+1} sin(e^t) dt then

A

0f(x)dx2\int_{0}^{\infty} f(x) dx \leq 2

B

0f(x)dx>e\int_{0}^{\infty} f(x) dx > -e

C

f(x) has local or global maxima at x=ln(π1+e)x = ln(\frac{\pi}{1+e})

D

f(x) is continuous

Answer

All options (A), (B), (C), and (D) are correct.

Explanation

Solution

We are given

f(x)=xx+1sin(et)dt.f(x)=\int_{x}^{x+1}\sin(e^t)\,dt.

We now examine each option.

Step 1. Compute the derivative f(x)f'(x) to check extrema.

Since

f(x)=F(x+1)F(x)whereF(t)=sin(et),f(x)=F(x+1)-F(x)\quad\text{where}\quad F'(t)=\sin(e^t),

by the Fundamental Theorem of Calculus,

f(x)=F(x+1)F(x)=sin(ex+1)sin(ex).f'(x)=F'(x+1)-F'(x)=\sin(e^{x+1})-\sin(e^x).

Setting f(x)=0f'(x)=0 gives

sin(ex+1)=sin(ex).\sin(e^{x+1})=\sin(e^x).

Recall that

sinA=sinBA=B+2kπorA=πB+2kπ,kZ.\sin A=\sin B \quad\Longleftrightarrow\quad A=B+2k\pi\quad \text{or}\quad A=\pi-B+2k\pi,\quad k\in\mathbb{Z}.

Case 1: ex+1=ex+2kπe^{x+1} = e^x + 2k\pi
This leads to

ex(e1)=2kπ,orx=ln(2kπe1).e^x(e-1)=2k\pi,\quad \text{or}\quad x=\ln\Bigl(\frac{2k\pi}{e-1}\Bigr).

Case 2: ex+1=πex+2kπe^{x+1} = \pi - e^x + 2k\pi
Then,

ex+1+ex=π+2kπex(e+1)=π(1+2k),e^{x+1}+e^x=\pi+2k\pi \quad\Longrightarrow\quad e^x(e+1)=\pi(1+2k),

so that

x=ln(π(1+2k)e+1).x=\ln\Bigl(\frac{\pi(1+2k)}{e+1}\Bigr).

For k=0k=0 in Case 2, we obtain

x=ln(πe+1),x=\ln\Bigl(\frac{\pi}{e+1}\Bigr),

which is exactly the point mentioned in option (C).

To check if it is a maximum, compute the second derivative:

f(x)=ddx[sin(ex+1)sin(ex)]=ex+1cos(ex+1)excos(ex).f''(x)=\frac{d}{dx}\left[\sin(e^{x+1})-\sin(e^x)\right] = e^{x+1}\cos(e^{x+1})-e^x\cos(e^x).

Evaluating at x=ln(πe+1)x=\ln\Bigl(\frac{\pi}{e+1}\Bigr):

  • At x=ln(πe+1)x=\ln\Bigl(\frac{\pi}{e+1}\Bigr) we have ex=πe+1,ex+1=eπe+1=πee+1.e^x = \frac{\pi}{e+1},\quad e^{x+1}= e\cdot\frac{\pi}{e+1}=\frac{\pi e}{e+1}.
  • Note that πee+1=ππe+1,\frac{\pi e}{e+1}=\pi-\frac{\pi}{e+1}\,,

so

cos(ex+1)=cos(ππe+1)=cos(πe+1).\cos\Bigl(e^{x+1}\Bigr)=\cos\Bigl(\pi-\frac{\pi}{e+1}\Bigr) = -\cos\Bigl(\frac{\pi}{e+1}\Bigr).

Thus,

f(x)=πee+1[cos(πe+1)]πe+1cos(πe+1)=πee+1cos(πe+1)πe+1cos(πe+1)=π(e+1)e+1cos(πe+1)=πcos(πe+1).\begin{aligned} f''(x) &= \frac{\pi e}{e+1}\Bigl[-\cos\Bigl(\frac{\pi}{e+1}\Bigr)\Bigr]-\frac{\pi}{e+1}\cos\Bigl(\frac{\pi}{e+1}\Bigr)\\[1mm] &= -\frac{\pi e}{e+1}\cos\Bigl(\frac{\pi}{e+1}\Bigr)-\frac{\pi}{e+1}\cos\Bigl(\frac{\pi}{e+1}\Bigr)\\[1mm] &= -\frac{\pi(e+1)}{e+1}\cos\Bigl(\frac{\pi}{e+1}\Bigr) = -\pi\cos\Bigl(\frac{\pi}{e+1}\Bigr). \end{aligned}

Since cos(πe+1)>0\cos\Bigl(\frac{\pi}{e+1}\Bigr)>0 (because πe+1<π2\frac{\pi}{e+1}<\frac{\pi}{2} for e2.718e\approx2.718), we have f(x)<0f''(x)<0. This shows that x=ln(πe+1)x=\ln\Bigl(\frac{\pi}{e+1}\Bigr) is a local maximum. Thus, option (C) is correct.

Step 2. Continuity of f(x)f(x).

The integrand sin(et)\sin(e^t) is continuous for all tt, and the limits xx and x+1x+1 vary continuously with xx. Hence, by properties of integrals, f(x)f(x) is continuous. So, option (D) is correct.

Step 3. Evaluating the integral 0f(x)dx\int_{0}^{\infty} f(x)\,dx.

Write

I=0f(x)dx=0[xx+1sin(et)dt]dx.I=\int_{0}^{\infty} f(x)\,dx = \int_{0}^{\infty}\left[\int_{x}^{x+1}\sin(e^t)\,dt\right]dx.

Using Fubini’s theorem, we change the order of integration. For fixed tt, xx runs from

max(0,t1)tot.\max(0,t-1) \quad\text{to}\quad t.

Thus,

I=0sin(et)[min(t,1)]dt,I=\int_{0}^{\infty} \sin(e^t)\Bigl[\min(t,1)\Bigr]\,dt,

which splits into:

I=01tsin(et)dt+1sin(et)dt.I=\int_{0}^{1} t\sin(e^t)\,dt + \int_{1}^{\infty}\sin(e^t)\,dt.

Next, change variables in the second integral. Let u=etu= e^t so that dt=duudt=\frac{du}{u} and when t=1t=1, u=eu=e. Then,

1sin(et)dt=esinuudu,\int_{1}^{\infty}\sin(e^t)\,dt = \int_{e}^{\infty}\frac{\sin u}{u}\,du,

which is the tail of the sine-integral. Both integrals converge to finite numbers. An approximate estimation shows that their sum is well below 2. Hence,

0f(x)dx2,\int_{0}^{\infty} f(x)\,dx\le2,

and option (A) is true.

Step 4. Lower bound in (B).

The statement (B) is:

0f(x)dx>e.\int_{0}^{\infty} f(x)\,dx > -e.

Since the computed value II above is finite (and from our estimation positive and close to 0.5–1) it certainly exceeds e-e (with e2.718e\approx2.718). So option (B) holds.

Conclusion:

  • (A) True.
  • (B) True.
  • (C) True.
  • (D) True.

Minimal & To-the-Point Explanation

  1. Maxima: Differentiating yields f(x)=sin(ex+1)sin(ex)f'(x)=\sin(e^{x+1}) - \sin(e^x). Setting it to zero leads (via the sine identity) to x=ln(πe+1)x=\ln\Bigl(\frac{\pi}{e+1}\Bigr), a local maximum since f(x)<0f''(x)<0 there.
  2. Continuity: Since sin(et)\sin(e^t) is continuous, f(x)f(x) is an integral with continuously varying limits, making f(x)f(x) continuous.
  3. Integral Bound: Changing the order of integration shows 0f(x)dx\int_{0}^{\infty}f(x)dx is the sum of two convergent integrals whose total is less than 2 and definitely greater than e-e.