Solveeit Logo

Question

Question: Let a, b > 0 and $\Delta = \begin{vmatrix} -x & b & a \\ b & -x & b \\ a & b & -x \end{vmatrix}$, th...

Let a, b > 0 and Δ=xbabxbabx\Delta = \begin{vmatrix} -x & b & a \\ b & -x & b \\ a & b & -x \end{vmatrix}, then

A

a + b - x is a factor of Δ\Delta

B

x2+(a+b)x+a2+b2abx^2 + (a + b)x + a^2 + b^2 - ab is a factor of Δ\Delta

C

Δ=0\Delta = 0 has three real roots if a = b

D

a + b + x is a factor of Δ\Delta

Answer

Option (C)

Explanation

Solution

We are given

Δ=xbabxbabx.\Delta=\begin{vmatrix}-x & b & a \\ b & -x & b \\ a & b & -x\end{vmatrix}.

Expanding along the first row:

Δ=xxbbxbbbax+abxab=x[(x)(x)bb]b[b(x)ba]+a[bb(x)a]=x[x2b2]b[bxab]+a[b2+ax]=x3+xb2+b2x+ab2+ab2+a2x=x3+(a2+2b2)x+2ab2.\begin{aligned} \Delta &=-x\begin{vmatrix}-x & b \\ b & -x\end{vmatrix} -b\begin{vmatrix}b & b \\ a & -x\end{vmatrix} + a\begin{vmatrix}b & -x \\ a & b\end{vmatrix}\\[1mm] &=-x\Big[(-x)(-x)-b\cdot b\Big] - b\Big[b(-x)-b\cdot a\Big] + a\Big[b\cdot b-(-x)a\Big]\\[1mm] &=-x\Big[x^2-b^2\Big] - b\Big[-bx-ab\Big] + a\Big[b^2+ax\Big]\\[1mm] &=-x^3+x\,b^2 + b^2x+ab^2 + ab^2+a^2x\\[1mm] &=-x^3+\Big(a^2+2b^2\Big)x+2ab^2. \end{aligned}

Thus,

Δ=x3+(a2+2b2)x+2ab2.\Delta = -x^3+(a^2+2b^2)x+2ab^2.

None of the candidate linear factors in (A) or (D) will cancel this cubic for all a,b>0a,b>0 (one can verify by substituting x=a+bx=a+b in (A) or x=abx=-a-b in (D)). Testing (B) via polynomial division shows the quadratic in (B) does not divide Δ\Delta in general.

Now, consider option (C):
When a=ba=b (let a=b=c>0a=b=c>0), the determinant becomes

Δ=xcccxcccx.\Delta=\begin{vmatrix}-x & c & c \\ c & -x & c \\ c & c & -x\end{vmatrix}.

A standard result for a 3×33\times3 matrix with diagonal entries pp and off‐diagonals qq is:

det=(pq)2(p+2q).\det = (p-q)^2 (p+2q).

Here, p=xp=-x and q=cq=c; so

Δ=[(x)c]2[(x)+2c]=(x+c)2(2cx).\Delta = [(-x)-c]^2\Big[(-x)+2c\Big]=(x+c)^2(2c-x).

Setting Δ=0\Delta=0 gives the roots:

x=c(double root)andx=2c.x=-c \quad (\text{double root}) \quad \text{and} \quad x=2c.

These are all real. Hence, option (C) is correct.