Solveeit Logo

Question

Question: $\int \frac{1+4^x+16^x}{1+2^x+4^x} dx$...

1+4x+16x1+2x+4xdx\int \frac{1+4^x+16^x}{1+2^x+4^x} dx

Answer

4x2ln22xln2+x+C\frac{4^x}{2 \ln 2} - \frac{2^x}{\ln 2} + x + C

Explanation

Solution

The given integral is: 1+4x+16x1+2x+4xdx\int \frac{1+4^x+16^x}{1+2^x+4^x} dx

Step 1: Simplify the integrand using substitution. Let y=2xy = 2^x. Then 4x=(2x)2=y24^x = (2^x)^2 = y^2 and 16x=(2x)4=y416^x = (2^x)^4 = y^4.

Substitute these into the integrand: 1+y2+y41+y+y2\frac{1+y^2+y^4}{1+y+y^2}

Step 2: Apply algebraic identity to the numerator. Recall the algebraic identity for sum of powers: a4+a2+1=(a2+1)2a2=(a2+1a)(a2+1+a)a^4+a^2+1 = (a^2+1)^2 - a^2 = (a^2+1-a)(a^2+1+a). Applying this identity with a=ya=y, the numerator becomes: 1+y2+y4=(y2y+1)(y2+y+1)1+y^2+y^4 = (y^2-y+1)(y^2+y+1)

Step 3: Simplify the rational expression. Substitute the factored numerator back into the integrand expression: (y2y+1)(y2+y+1)1+y+y2\frac{(y^2-y+1)(y^2+y+1)}{1+y+y^2} Since 1+y+y21+y+y^2 is common to both numerator and denominator, we can cancel it out (assuming 1+y+y201+y+y^2 \neq 0, which is always true for real y=2x>0y=2^x > 0). The expression simplifies to: y2y+1y^2-y+1

Step 4: Substitute back xx terms. Substitute y=2xy = 2^x back into the simplified expression: (2x)22x+1=4x2x+1(2^x)^2 - 2^x + 1 = 4^x - 2^x + 1

Step 5: Integrate the simplified expression. Now, we need to integrate 4x2x+14^x - 2^x + 1 with respect to xx: (4x2x+1)dx\int (4^x - 2^x + 1) dx Using the standard integral formula axdx=axlna+C\int a^x dx = \frac{a^x}{\ln a} + C: 4xdx=4xln4\int 4^x dx = \frac{4^x}{\ln 4} 2xdx=2xln2\int 2^x dx = \frac{2^x}{\ln 2} 1dx=x\int 1 dx = x Combining these results: 4xln42xln2+x+C\frac{4^x}{\ln 4} - \frac{2^x}{\ln 2} + x + C

Step 6: Simplify the final result. We know that ln4=ln(22)=2ln2\ln 4 = \ln (2^2) = 2 \ln 2. Substitute this into the expression: 4x2ln22xln2+x+C\frac{4^x}{2 \ln 2} - \frac{2^x}{\ln 2} + x + C To combine the terms with ln2\ln 2 in the denominator: 4x22x2ln2+x+C\frac{4^x - 2 \cdot 2^x}{2 \ln 2} + x + C 4x2x+12ln2+x+C\frac{4^x - 2^{x+1}}{2 \ln 2} + x + C

The final answer is: 4x2ln22xln2+x+C\frac{4^x}{2 \ln 2} - \frac{2^x}{\ln 2} + x + C or 4x2x+12ln2+x+C\frac{4^x - 2^{x+1}}{2 \ln 2} + x + C