Solveeit Logo

Question

Question: An electrochemical cell is fueled by the combustion of butane at 1 bar and 298 K. Its cell potential...

An electrochemical cell is fueled by the combustion of butane at 1 bar and 298 K. Its cell potential is XF×103\frac{X}{F} \times 10^3 volts, where FF is the Faraday constant. The value of XX is ____.

Use: Standard Gibbs energies of formation at 298 K are: ΔfGCO2o=394\Delta_f G_{CO_2}^o = -394 kJ mol1^{-1}; ΔfGwatero=237\Delta_f G_{water}^o = -237 kJ mol1^{-1}; ΔfGbutaneo=18\Delta_f G_{butane}^o = -18 kJ mol1^{-1}

Answer

105.5

Explanation

Solution

The balanced chemical equation for the combustion of butane is:

C4H10(g)+6.5O2(g)4CO2(g)+5H2O(l)\text{C}_4\text{H}_{10}\text{(g)} + 6.5\text{O}_2\text{(g)} \rightarrow 4\text{CO}_2\text{(g)} + 5\text{H}_2\text{O(l)}

We are given the standard Gibbs energies of formation at 298 K:

ΔfGCO2o=394\Delta_f G_{CO_2}^o = -394 kJ mol1^{-1}

ΔfGwater(l)o=237\Delta_f G_{water(l)}^o = -237 kJ mol1^{-1}

ΔfGbutane(g)o=18\Delta_f G_{butane(g)}^o = -18 kJ mol1^{-1}

The standard Gibbs energy of formation of O2(g)\text{O}_2\text{(g)} in its standard state is 0 kJ mol1^{-1}.

The standard Gibbs free energy change for the reaction (ΔrGo\Delta_r G^o) is calculated as:

ΔrGo=(stoichiometric coefficient×ΔfGproductso)(stoichiometric coefficient×ΔfGreactantso)\Delta_r G^o = \sum (\text{stoichiometric coefficient} \times \Delta_f G^o_{\text{products}}) - \sum (\text{stoichiometric coefficient} \times \Delta_f G^o_{\text{reactants}})

ΔrGo=[4×ΔfGCO2o+5×ΔfGH2O(l)o][1×ΔfGC4H10(g)o+6.5×ΔfGO2(g)o]\Delta_r G^o = [4 \times \Delta_f G_{CO_2}^o + 5 \times \Delta_f G_{H_2O(l)}^o] - [1 \times \Delta_f G_{C_4H_{10}(g)}^o + 6.5 \times \Delta_f G_{O_2(g)}^o]

ΔrGo=[4×(394 kJ/mol)+5×(237 kJ/mol)][1×(18 kJ/mol)+6.5×(0 kJ/mol)]\Delta_r G^o = [4 \times (-394 \text{ kJ/mol}) + 5 \times (-237 \text{ kJ/mol})] - [1 \times (-18 \text{ kJ/mol}) + 6.5 \times (0 \text{ kJ/mol})]

ΔrGo=[1576 kJ/mol1185 kJ/mol][18 kJ/mol]\Delta_r G^o = [-1576 \text{ kJ/mol} - 1185 \text{ kJ/mol}] - [-18 \text{ kJ/mol}]

ΔrGo=2761 kJ/mol+18 kJ/mol\Delta_r G^o = -2761 \text{ kJ/mol} + 18 \text{ kJ/mol}

ΔrGo=2743 kJ/mol\Delta_r G^o = -2743 \text{ kJ/mol}

Convert ΔrGo\Delta_r G^o to Joules per mole:

ΔrGo=2743×103\Delta_r G^o = -2743 \times 10^3 J/mol

The relation between standard Gibbs free energy change and standard cell potential (EoE^o) is:

ΔrGo=nFEo\Delta_r G^o = -nFE^o

where nn is the number of moles of electrons transferred in the reaction, and FF is the Faraday constant.

To find nn, we examine the changes in oxidation states.

In C4H10\text{C}_4\text{H}_{10}, the oxidation state of C is -2.5. The total oxidation state for 4 carbons is 4×(2.5)=104 \times (-2.5) = -10.

In CO2\text{CO}_2, the oxidation state of C is +4. The total oxidation state for 4 carbons is 4×(+4)=+164 \times (+4) = +16.

The change in total oxidation state of carbon is +16(10)=+26+16 - (-10) = +26. This corresponds to the loss of 26 electrons.

In O2\text{O}_2, the oxidation state of O is 0.

In CO2\text{CO}_2 and H2O\text{H}_2\text{O}, the oxidation state of O is -2.

There are 6.56.5 moles of O2\text{O}_2, which contain 6.5×2=136.5 \times 2 = 13 moles of oxygen atoms.

Each oxygen atom changes its oxidation state from 0 to -2, which is a gain of 2 electrons.

The total number of electrons gained by oxygen is 13×2=2613 \times 2 = 26.

So, the number of electrons transferred is n=26n = 26.

Now, we can calculate EoE^o:

Eo=ΔrGonFE^o = \frac{-\Delta_r G^o}{nF}

Eo=(2743×103 J/mol)26×F C/molE^o = \frac{-(-2743 \times 10^3 \text{ J/mol})}{26 \times F \text{ C/mol}}

Eo=2743×10326FE^o = \frac{2743 \times 10^3}{26F} V

The cell potential is given in the form XF×103\frac{X}{F} \times 10^3 volts.

Comparing this with our calculated EoE^o:

XF×103=274326×103F\frac{X}{F} \times 10^3 = \frac{2743}{26} \times \frac{10^3}{F}

X=274326X = \frac{2743}{26}

Calculate the value of XX:

X=274326=105.5X = \frac{2743}{26} = 105.5

The value of XX is 105.5.