Solveeit Logo

Question

Question: Let $(2x^2+3x+4)^{10} = \sum_{r=0}^{20} a_rx^r$. Then $\frac{a_7}{a_{13}}$ is equal to \_\_\_\_\_\_....

Let (2x2+3x+4)10=r=020arxr(2x^2+3x+4)^{10} = \sum_{r=0}^{20} a_rx^r. Then a7a13\frac{a_7}{a_{13}} is equal to ______.

Answer

8

Explanation

Solution

We need the coefficients a7a_7 and a13a_{13} in

(2x2+3x+4)10=r=020arxr.(2x^2+3x+4)^{10}=\sum_{r=0}^{20}a_r x^r.

Write the expansion by choosing, for each term, nonnegative integers i,j,ki,j,k with

i+j+k=10,and total exponent 2i+j=r.i+j+k=10,\quad \text{and total exponent }2i+j=r.

Thus:

ar=2i+j=r,  i+j1010!i!j!k!2i3j4k,with k=10ij.a_r=\sum_{2i+j=r,\; i+j\le10}\frac{10!}{i!\,j!\,k!}\,2^i\,3^j\,4^k,\quad \text{with }k=10-i-j.

For a7a_7:

We require

2i+j=7,j=72i,andk=10(i+j)=10(7i)=3+i.2i+j=7,\quad j=7-2i,\quad \text{and}\quad k=10-(i+j)=10-(7-i)=3+i.

Valid choices (with ii such that j0j\ge0) are:

  • i=0:j=7,  k=3i=0: j=7,\; k=3
  • i=1:j=5,  k=4i=1: j=5,\; k=4
  • i=2:j=3,  k=5i=2: j=3,\; k=5
  • i=3:j=1,  k=6i=3: j=1,\; k=6

Thus,

a7=i=0310!i!(72i)!(3+i)!2i372i43+i.a_7=\sum_{i=0}^{3}\frac{10!}{\,i!(7-2i)!(3+i)!}\,2^i\,3^{7-2i}\,4^{3+i}.

For a13a_{13}:

We require

2i+j=13,j=132i,andk=10(i+j)=10(13i)=i3.2i+j=13,\quad j=13-2i,\quad \text{and}\quad k=10-(i+j)=10-(13-i)=i-3.

Since k0k\ge0 we need i3i\ge 3 and j0j\ge0 implies i6i\le6. Write i=i+3i= i'+3 (with i=0,1,2,3i'=0,1,2,3); then

j=132(i+3)=72i,k=(i+3)3=i.j=13-2(i'+3)=7-2i',\quad k=(i'+3)-3=i'.

So,

a13=i=0310!(i+3)!(72i)!i!2i+3372i4i.a_{13}=\sum_{i'=0}^{3}\frac{10!}{\,(i'+3)!(7-2i')! \,i'!}\,2^{\,i'+3}\,3^{7-2i'}\,4^{\,i'}.

Observation: Re-indexing shows the same sum appears in both coefficients:

Let

S=i=0310!(i+3)!(72i)!i!2i372i4i.S=\sum_{i=0}^{3}\frac{10!}{\,(i+3)!(7-2i)! \,i!}\,2^{i}\,3^{7-2i}\,4^{\,i}.

Then,

a7=43=64i=0310!i!(72i)!(i+3)!(24)i372i=43S,a_7=\underbrace{4^3}_{=64}\,\sum_{i=0}^{3}\frac{10!}{i!(7-2i)!(i+3)!}\,(2\cdot4)^i\,3^{7-2i} = 4^3\,S, a13=23S.a_{13}=2^3\,S.

Thus,

a7a13=4323=648=8.\frac{a_7}{a_{13}}=\frac{4^3}{2^3}=\frac{64}{8}=8.

Summary:

  • Core Explanation: Re-index the sum for a13a_{13} with i=i+3i=i'+3. Both coefficients share a common sum SS so that a7=43Sa_7=4^3S and a13=23Sa_{13}=2^3S. Their ratio is 4323=8\frac{4^3}{2^3}=8.