Question
Question: Let $(2x^2+3x+4)^{10} = \sum_{r=0}^{20} a_rx^r$. Then $\frac{a_7}{a_{13}}$ is equal to \_\_\_\_\_\_....
Let (2x2+3x+4)10=∑r=020arxr. Then a13a7 is equal to ______.

Answer
8
Explanation
Solution
We need the coefficients a7 and a13 in
(2x2+3x+4)10=r=0∑20arxr.Write the expansion by choosing, for each term, nonnegative integers i,j,k with
i+j+k=10,and total exponent 2i+j=r.Thus:
ar=2i+j=r,i+j≤10∑i!j!k!10!2i3j4k,with k=10−i−j.For a7:
We require
2i+j=7,j=7−2i,andk=10−(i+j)=10−(7−i)=3+i.Valid choices (with i such that j≥0) are:
- i=0:j=7,k=3
- i=1:j=5,k=4
- i=2:j=3,k=5
- i=3:j=1,k=6
Thus,
a7=i=0∑3i!(7−2i)!(3+i)!10!2i37−2i43+i.For a13:
We require
2i+j=13,j=13−2i,andk=10−(i+j)=10−(13−i)=i−3.Since k≥0 we need i≥3 and j≥0 implies i≤6. Write i=i′+3 (with i′=0,1,2,3); then
j=13−2(i′+3)=7−2i′,k=(i′+3)−3=i′.So,
a13=i′=0∑3(i′+3)!(7−2i′)!i′!10!2i′+337−2i′4i′.Observation: Re-indexing shows the same sum appears in both coefficients:
Let
S=i=0∑3(i+3)!(7−2i)!i!10!2i37−2i4i.Then,
a7==6443i=0∑3i!(7−2i)!(i+3)!10!(2⋅4)i37−2i=43S, a13=23S.Thus,
a13a7=2343=864=8.Summary:
- Core Explanation: Re-index the sum for a13 with i=i′+3. Both coefficients share a common sum S so that a7=43S and a13=23S. Their ratio is 2343=8.