Solveeit Logo

Question

Question: The number of elements in the set {$n \in \{1,2,3,...,100\} | (11)^n > (10)^n + (9)^n$\} is _____....

The number of elements in the set {n{1,2,3,...,100}(11)n>(10)n+(9)nn \in \{1,2,3,...,100\} | (11)^n > (10)^n + (9)^n} is _____.

Answer

96

Explanation

Solution

Solution:

  1. Rewriting the Inequality:

    We have

    11n>10n+9n11^n > 10^n + 9^n.

    Divide both sides by 11n11^n:

    1>(1011)n+(911)n1 > \left(\frac{10}{11}\right)^n + \left(\frac{9}{11}\right)^n.

  2. Testing for the Smallest nn:

    Check for small values of nn:

    • For n=1n=1:

      1011+911=19111.727>1\frac{10}{11}+\frac{9}{11}=\frac{19}{11}\approx1.727>1.

    • For n=2n=2:

      (1011)2+(911)2=100+81121=1811211.495>1\left(\frac{10}{11}\right)^2+\left(\frac{9}{11}\right)^2=\frac{100+81}{121}=\frac{181}{121}\approx1.495>1.

    • For n=4n=4, the sum is still greater than 1 (detailed calculation omitted here).

    • For n=5n=5:

      (1011)5+(911)5<1\left(\frac{10}{11}\right)^5+\left(\frac{9}{11}\right)^5 < 1.

    Thus, the inequality first holds at n=5n=5.

  3. Counting Valid nn:

    Valid nn values are from 55 to 100100 (inclusive).

    Number of such nn is:

    1005+1=96100 - 5 + 1 = 96.