Solveeit Logo

Question

Question: Vertices of triangle are (k, -2k), (2, k) and (k, 2) has area 10 sq. unit, then the number of possib...

Vertices of triangle are (k, -2k), (2, k) and (k, 2) has area 10 sq. unit, then the number of possible integral values of k is

A

1

B

2

C

4

D

5

Answer

2

Explanation

Solution

Let the vertices be A(k,2k)A(k, -2k), B(2,k)B(2, k), and C(k,2)C(k, 2).

The area of a triangle with coordinates (x1,y1)(x_1, y_1), (x2,y2)(x_2, y_2), and (x3,y3)(x_3, y_3) is given by:

Area=12x1(y2y3)+x2(y3y1)+x3(y1y2)\text{Area} = \frac{1}{2}\left|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\right|

Substitute the coordinates:

Area=12k(k2)+2(2(2k))+k((2k)k)\text{Area} = \frac{1}{2} \left| k(k-2) + 2(2 - (-2k)) + k((-2k) - k) \right| =12k22k+2(2+2k)3k2= \frac{1}{2}\left| k^2 - 2k + 2(2+2k) - 3k^2 \right| =12k22k+4+4k3k2= \frac{1}{2}\left| k^2 - 2k + 4 + 4k - 3k^2 \right| =122k2+2k+4= \frac{1}{2}\left| -2k^2 + 2k + 4 \right|

Given that the area is 1010 sq. units, we have:

122k2+2k+4=10    2k2+2k+4=20\frac{1}{2}\left| -2k^2 + 2k + 4 \right| = 10 \implies \left| -2k^2 + 2k + 4 \right| = 20

This leads to two cases:

Case 1:

2k2+2k+4=20-2k^2 + 2k + 4 = 20 2k2+2k16=0    2k22k+16=0-2k^2 + 2k -16 = 0 \implies 2k^2 - 2k + 16 = 0 k2k+8=0k^2 - k + 8 = 0

The discriminant is:

Δ=(1)24(1)(8)=132=31(No real solutions)\Delta = (-1)^2 - 4(1)(8) = 1 - 32 = -31 \quad \text{(No real solutions)}

Case 2:

2k2+2k+4=20-2k^2 + 2k + 4 = -20 2k2+2k+24=0    2k22k24=0-2k^2 + 2k + 24 = 0 \implies 2k^2 - 2k - 24 = 0 k2k12=0k^2 - k - 12 = 0

Solve using the quadratic formula:

k=1±1+482=1±72k = \frac{1 \pm \sqrt{1 + 48}}{2} = \frac{1 \pm 7}{2}

Thus,

k=82=4ork=62=3k = \frac{8}{2} = 4 \quad \text{or} \quad k = \frac{-6}{2} = -3

Both are integral values.

Therefore, the number of possible integral values of kk is 2.