Solveeit Logo

Question

Question: Let $f:R \rightarrow R$ be a polynomial function satisfying the equation $f(f(x)-2y)=2x-3y+f(f(y)-x)...

Let f:RRf:R \rightarrow R be a polynomial function satisfying the equation f(f(x)2y)=2x3y+f(f(y)x)f(f(x)-2y)=2x-3y+f(f(y)-x), x,yR\forall x, y \in R, then the value of f(9)f(3)f(9)-f(3) is equal to

A

5

B

4

C

6

Answer

6

Explanation

Solution

Assume f(x)=ax+bf(x) = ax + b.

Substitute into the equation:

f(f(x)2y)=a(ax+b2y)+b=a2x+ab2ay+b,f(f(x)-2y) = a(ax + b - 2y) + b = a^2x + ab - 2ay + b, f(f(y)x)=a(ay+bx)+b=a2y+abax+b.f(f(y)-x) = a(ay + b - x) + b = a^2y + ab - ax + b.

So the equation becomes:

a2x+ab2ay+b=2x3y+a2y+abax+b.a^2x + ab - 2ay + b = 2x - 3y + a^2y + ab - ax + b.

Matching coefficients for xx and yy:

  • For xx: a2=2aa^2 = 2 - a \Rightarrow a2+a2=0a^2 + a - 2 = 0 \Rightarrow (a+2)(a1)=0(a+2)(a-1)=0. Thus, a=1a = 1 (rejecting a=2a=-2 as it doesn't satisfy the yy coefficient below).
  • For yy: 2a=a23-2a = a^2 - 3. With a=1a = 1: 2=132=2-2 = 1 - 3 \Rightarrow -2 = -2.

Thus, f(x)=x+bf(x) = x + b. Therefore,

f(9)f(3)=(9+b)(3+b)=6.f(9)-f(3) = (9+b) - (3+b) = 6.