Question
Question: Let $f:R \rightarrow R$ be a polynomial function satisfying the equation $f(f(x)-2y)=2x-3y+f(f(y)-x)...
Let f:R→R be a polynomial function satisfying the equation f(f(x)−2y)=2x−3y+f(f(y)−x), ∀x,y∈R, then the value of f(9)−f(3) is equal to
A
5
B
4
C
6
Answer
6
Explanation
Solution
Assume f(x)=ax+b.
Substitute into the equation:
f(f(x)−2y)=a(ax+b−2y)+b=a2x+ab−2ay+b, f(f(y)−x)=a(ay+b−x)+b=a2y+ab−ax+b.So the equation becomes:
a2x+ab−2ay+b=2x−3y+a2y+ab−ax+b.Matching coefficients for x and y:
- For x: a2=2−a ⇒ a2+a−2=0 ⇒ (a+2)(a−1)=0. Thus, a=1 (rejecting a=−2 as it doesn't satisfy the y coefficient below).
- For y: −2a=a2−3. With a=1: −2=1−3⇒−2=−2.
Thus, f(x)=x+b. Therefore,
f(9)−f(3)=(9+b)−(3+b)=6.