Solveeit Logo

Question

Question: Let a and b be two nonzero real numbers. If the coefficient of $x^5$ in the expansion of $(\frac{70}...

Let a and b be two nonzero real numbers. If the coefficient of x5x^5 in the expansion of (70ax2+ax27bx)4(\frac{70}{ax^2}+\frac{ax}{27bx})^4 is equal to the coefficient of x5x^{-5} in the expansion of (ax1bx2)7(ax-\frac{1}{bx^2})^7, then the value of 2b is

A

1

B

2

C

3

D

4

Answer

3

Explanation

Solution

Solution Explanation:

  1. Write the general term for the expansion of
(ax2+7027bx)4:\left(ax^2+\frac{70}{27bx}\right)^4: Tr+1=(4r)(ax2)4r(7027bx)r.T_{r+1} = \binom{4}{r}(ax^2)^{4-r}\left(\frac{70}{27b\,x}\right)^r.

The power of xx in Tr+1T_{r+1} is:

2(4r)r=83r.2(4-r)-r = 8-3r.

For the term in x5x^5:

83r=5r=1.8-3r = 5 \quad\Rightarrow\quad r=1.

Thus, the coefficient is:

(41)a3(7027b)=4a3(7027b).\binom{4}{1}a^{3}\left(\frac{70}{27b}\right)= 4a^3\left(\frac{70}{27b}\right).
  1. Write the general term for the expansion of
(ax1bx2)7:\left(ax-\frac{1}{bx^2}\right)^7: Tr+1=(7r)(ax)7r(1bx2)r.T_{r+1} = \binom{7}{r}(ax)^{7-r}\left(-\frac{1}{bx^2}\right)^r.

The power of xx in Tr+1T_{r+1} is:

(7r)2r=73r.(7-r)-2r = 7-3r.

For the term in x5x^{-5}:

73r=53r=12r=4.7-3r = -5 \quad\Rightarrow\quad 3r = 12 \quad\Rightarrow\quad r=4.

Thus, the coefficient is:

(74)a3(1)4b4=(74)a3b4.\binom{7}{4}a^{3}\frac{(-1)^4}{b^4} = \binom{7}{4}\frac{a^3}{b^4}.

Since (74)=35\binom{7}{4}=35, this coefficient equals 35a3b4\displaystyle 35\frac{a^3}{b^4}.

  1. Equate the two coefficients (ignoring the common a3a^3):
4(7027b)=35b4.4\left(\frac{70}{27b}\right)=\frac{35}{b^4}.

This simplifies to:

28027b=35b4.\frac{280}{27b}=\frac{35}{b^4}.

Multiplying both sides by 27b427b^4:

280b3=35×27.280b^3=35\times 27.

So,

b3=35×27280=945280=278b=32.b^3=\frac{35\times 27}{280}=\frac{945}{280}=\frac{27}{8}\quad \Rightarrow \quad b=\frac{3}{2}.

Therefore, 2b=32b=3.

Answer: 33 (Option: 3)

Subject: Mathematics
Chapter: Binomial Theorem
Topic: Binomial Expansion

Difficulty Level: Medium
Question Type: multiple_choice