Solveeit Logo

Question

Question: Find the condition that the diagonals of the parallelogram formed by the lines $ax + by + c = 0; ax...

Find the condition that the diagonals of the parallelogram formed by the lines

ax+by+c=0;ax+by+c=0;ax+by+c=0ax + by + c = 0; ax + by + c' = 0; a'x + b'y +c=0 & ax+by+c=0a'x + b'y + c' = 0 are at right angles. Also find the equation to the diagonals of the parallelogram.

Answer

The condition that the diagonals of the parallelogram are at right angles is: a2+b2=(a)2+(b)2a^2 + b^2 = (a')^2 + (b')^2

The equations to the diagonals of the parallelogram are:

  1. (aa)x+(bb)y=0(a-a')x + (b-b')y = 0
  2. (a+a)x+(b+b)y+(c+c)=0(a+a')x + (b+b')y + (c+c') = 0
Explanation

Solution

The four given lines are: L1:ax+by+c=0L_1: ax + by + c = 0 L2:ax+by+c=0L_2: ax + by + c' = 0 L3:ax+by+c=0L_3: a'x + b'y + c = 0 L4:ax+by+c=0L_4: a'x + b'y + c' = 0

These lines form a parallelogram because L1L2L_1 \parallel L_2 (both have slope a/b-a/b) and L3L4L_3 \parallel L_4 (both have slope a/b-a'/b').

1. Condition for diagonals to be at right angles

Let the vertices of the parallelogram be: A = L1L3L_1 \cap L_3 B = L1L4L_1 \cap L_4 C = L2L4L_2 \cap L_4 D = L2L3L_2 \cap L_3

The diagonals are AC and BD.

The slope of the lines L1L_1 and L2L_2 is m1=a/bm_1 = -a/b. The slope of the lines L3L_3 and L4L_4 is m2=a/bm_2 = -a'/b'.

The vertices are: A=L1L3:(c(bb)abab,c(aa)abab)A = L_1 \cap L_3: \left(\frac{c(b'-b)}{ab'-a'b}, \frac{c(a-a')}{ab'-a'b}\right) B=L1L4:(bcbcabab,acacabab)B = L_1 \cap L_4: \left(\frac{bc'-b'c}{ab'-a'b}, \frac{a'c-ac'}{ab'-a'b}\right) C=L2L4:(c(bb)abab,c(aa)abab)C = L_2 \cap L_4: \left(\frac{c'(b'-b)}{ab'-a'b}, \frac{c'(a-a')}{ab'-a'b}\right) D=L2L3:(bcbcabab,acacabab)D = L_2 \cap L_3: \left(\frac{bc-b'c'}{ab'-a'b}, \frac{a'c'-ac}{ab'-a'b}\right)

Slope of diagonal AC (mACm_{AC}): mAC=yCyAxCxA=c(aa)ababc(aa)ababc(bb)ababc(bb)abab=(cc)(aa)(cc)(bb)=aabbm_{AC} = \frac{y_C - y_A}{x_C - x_A} = \frac{\frac{c'(a-a')}{ab'-a'b} - \frac{c(a-a')}{ab'-a'b}}{\frac{c'(b'-b)}{ab'-a'b} - \frac{c(b'-b)}{ab'-a'b}} = \frac{(c'-c)(a-a')}{(c'-c)(b'-b)} = \frac{a-a'}{b'-b} (assuming ccc \neq c')

Slope of diagonal BD (mBDm_{BD}): mBD=yDyBxDxB=acacababacacababbcbcababbcbcabab=acacac+acbcbcbc+bc=(a+a)(cc)(b+b)(cc)=a+ab+bm_{BD} = \frac{y_D - y_B}{x_D - x_B} = \frac{\frac{a'c'-ac}{ab'-a'b} - \frac{a'c-ac'}{ab'-a'b}}{\frac{bc-b'c'}{ab'-a'b} - \frac{bc'-b'c}{ab'-a'b}} = \frac{a'c'-ac-a'c+ac'}{bc-b'c'-bc'+b'c} = \frac{(a+a')(c'-c)}{-(b+b')(c'-c)} = -\frac{a+a'}{b+b'} (assuming ccc \neq c')

For the diagonals to be at right angles, mACmBD=1m_{AC} \cdot m_{BD} = -1. (aabb)(a+ab+b)=1\left(\frac{a-a'}{b'-b}\right) \cdot \left(-\frac{a+a'}{b+b'}\right) = -1 (aa)(a+a)(bb)(b+b)=1\frac{(a-a')(a+a')}{(b-b')(b+b')} = -1 a2(a)2b2(b)2=1\frac{a^2 - (a')^2}{b^2 - (b')^2} = -1 a2(a)2=(b2(b)2)a^2 - (a')^2 = -(b^2 - (b')^2) a2(a)2=b2+(b)2a^2 - (a')^2 = -b^2 + (b')^2 a2+b2=(a)2+(b)2a^2 + b^2 = (a')^2 + (b')^2

This is the condition for the diagonals to be at right angles.

2. Equation to the diagonals of the parallelogram

The two diagonals are given by the equations: Diagonal 1: L1L2=k(L3L4)L_1 - L_2 = k(L_3 - L_4) (ax+by+c)(ax+by+c)=k((ax+by+c)(ax+by+c))(ax+by+c) - (ax+by+c') = k((a'x+b'y+c) - (a'x+b'y+c')) cc=k(cc)c - c' = k(c - c') This implies k=1k=1. So, one diagonal is L1L3=L2L4L_1 - L_3 = L_2 - L_4. (ax+by+c)(ax+by+c)=(ax+by+c)(ax+by+c)(ax+by+c) - (a'x+b'y+c) = (ax+by+c') - (a'x+b'y+c') (aa)x+(bb)y=(aa)x+(bb)y(a-a')x + (b-b')y = (a-a')x + (b-b')y This is an identity, not an equation of a diagonal.

The correct method for finding the equations of the diagonals of a parallelogram formed by the lines L1=0,L2=0,L3=0,L4=0L_1=0, L_2=0, L_3=0, L_4=0 is to use the fact that the diagonals pass through the intersection points of opposite vertices. Let the lines be P1=ax+by+c=0P_1=ax+by+c=0, P2=ax+by+c=0P_2=ax+by+c'=0, Q1=ax+by+c=0Q_1=a'x+b'y+c=0, Q2=ax+by+c=0Q_2=a'x+b'y+c'=0. The vertices are (P1,Q1)(P_1, Q_1), (P1,Q2)(P_1, Q_2), (P2,Q2)(P_2, Q_2), (P2,Q1)(P_2, Q_1). The diagonals connect (P1,Q1)(P_1, Q_1) to (P2,Q2)(P_2, Q_2) and (P1,Q2)(P_1, Q_2) to (P2,Q1)(P_2, Q_1).

Equation of diagonal AC (connecting L1L3L_1 \cap L_3 and L2L4L_2 \cap L_4): This diagonal passes through the intersection of L1=0L_1=0 and L3=0L_3=0, and the intersection of L2=0L_2=0 and L4=0L_4=0. The general equation of a line passing through the intersection of L1=0L_1=0 and L3=0L_3=0 is L1+λL3=0L_1 + \lambda L_3 = 0. ax+by+c+λ(ax+by+c)=0ax+by+c + \lambda(a'x+b'y+c) = 0 This line also passes through the intersection of L2=0L_2=0 and L4=0L_4=0. So, (ax+by+c)+λ(ax+by+c)=0(ax+by+c') + \lambda(a'x+b'y+c') = 0. Subtracting the two equations: (ax+by+c)+λ(ax+by+c)[(ax+by+c)+λ(ax+by+c)]=0(ax+by+c) + \lambda(a'x+b'y+c) - [(ax+by+c') + \lambda(a'x+b'y+c')] = 0 (cc)+λ(cc)=0(c-c') + \lambda(c-c') = 0 (cc)(1+λ)=0(c-c')(1+\lambda) = 0. Since ccc \neq c', we must have 1+λ=0λ=11+\lambda = 0 \Rightarrow \lambda = -1. Substitute λ=1\lambda = -1 into L1+λL3=0L_1 + \lambda L_3 = 0: (ax+by+c)(ax+by+c)=0(ax+by+c) - (a'x+b'y+c) = 0 (aa)x+(bb)y=0(a-a')x + (b-b')y = 0 This is the equation of one diagonal.

Equation of diagonal BD (connecting L1L4L_1 \cap L_4 and L2L3L_2 \cap L_3): This diagonal passes through the intersection of L1=0L_1=0 and L4=0L_4=0, and the intersection of L2=0L_2=0 and L3=0L_3=0. The general equation of a line passing through the intersection of L1=0L_1=0 and L4=0L_4=0 is L1+μL4=0L_1 + \mu L_4 = 0. ax+by+c+μ(ax+by+c)=0ax+by+c + \mu(a'x+b'y+c') = 0 This line also passes through the intersection of L2=0L_2=0 and L3=0L_3=0. So, (ax+by+c)+μ(ax+by+c)=0(ax+by+c') + \mu(a'x+b'y+c) = 0. Subtracting the two equations: (ax+by+c)+μ(ax+by+c)[(ax+by+c)+μ(ax+by+c)]=0(ax+by+c) + \mu(a'x+b'y+c') - [(ax+by+c') + \mu(a'x+b'y+c)] = 0 (cc)+μ(cc)=0(c-c') + \mu(c'-c) = 0 (cc)μ(cc)=0(c-c') - \mu(c-c') = 0 (cc)(1μ)=0(c-c')(1-\mu) = 0. Since ccc \neq c', we must have 1μ=0μ=11-\mu = 0 \Rightarrow \mu = 1. Substitute μ=1\mu = 1 into L1+μL4=0L_1 + \mu L_4 = 0: (ax+by+c)+(ax+by+c)=0(ax+by+c) + (a'x+b'y+c') = 0 (a+a)x+(b+b)y+(c+c)=0(a+a')x + (b+b')y + (c+c') = 0 This is the equation of the other diagonal.

The two equations of the diagonals are:

  1. (aa)x+(bb)y=0(a-a')x + (b-b')y = 0
  2. $(a+a')x + (b+b')y + (c+c') = 0