Solveeit Logo

Question

Question: Q.12 $x^2-(k+6)x+2(2k-1)$...

Q.12 x2(k+6)x+2(2k1)x^2-(k+6)x+2(2k-1)

Answer

The quadratic x2(k+6)x+2(2k1)x^2-(k+6)x+2(2k-1) has two distinct real roots for all real numbers kk.

Explanation

Solution

Solution:

We are given the quadratic

f(x)=x2(k+6)x+2(2k1).f(x)=x^2-(k+6)x+2(2k-1).

To have real roots, the discriminant must be non‐negative. The discriminant Δ\Delta is

Δ=(k+6)2412(2k1).\Delta=(k+6)^2-4\cdot1\cdot2(2k-1).

Step 1: Expand and simplify the discriminant

Δ=(k+6)28(2k1).\Delta=(k+6)^2-8(2k-1).

Expanding,

(k+6)2=k2+12k+36,(k+6)^2=k^2+12k+36,

and

8(2k1)=16k8.8(2k-1)=16k-8.

Thus,

Δ=k2+12k+3616k+8=k24k+44.\Delta=k^2+12k+36-16k+8=k^2-4k+44.

Step 2: Write in a completed square form

Complete the square for k24k+44k^2-4k+44:

k24k+44=(k24k+4)+40=(k2)2+40.k^2-4k+44=(k^2-4k+4)+40=(k-2)^2+40.

Since (k2)20(k-2)^2\ge0 for all real kk, clearly

Δ=(k2)2+4040>0for all real k.\Delta=(k-2)^2+40\ge40>0 \quad \text{for all real } k.

Thus, the quadratic has two distinct real roots for every kRk\in \mathbb{R}.


Explanation (minimal):

  1. Write the discriminant Δ=(k+6)28(2k1)\Delta=(k+6)^2-8(2k-1).
  2. Simplify it to Δ=(k2)2+40\Delta=(k-2)^2+40.
  3. Since (k2)20(k-2)^2\ge0, Δ40>0\Delta\ge40>0 for all kk.