Question
Question: Q.12 $x^2-(k+6)x+2(2k-1)$...
Q.12 x2−(k+6)x+2(2k−1)
Answer
The quadratic x2−(k+6)x+2(2k−1) has two distinct real roots for all real numbers k.
Explanation
Solution
Solution:
We are given the quadratic
f(x)=x2−(k+6)x+2(2k−1).To have real roots, the discriminant must be non‐negative. The discriminant Δ is
Δ=(k+6)2−4⋅1⋅2(2k−1).Step 1: Expand and simplify the discriminant
Δ=(k+6)2−8(2k−1).Expanding,
(k+6)2=k2+12k+36,and
8(2k−1)=16k−8.Thus,
Δ=k2+12k+36−16k+8=k2−4k+44.Step 2: Write in a completed square form
Complete the square for k2−4k+44:
k2−4k+44=(k2−4k+4)+40=(k−2)2+40.Since (k−2)2≥0 for all real k, clearly
Δ=(k−2)2+40≥40>0for all real k.Thus, the quadratic has two distinct real roots for every k∈R.
Explanation (minimal):
- Write the discriminant Δ=(k+6)2−8(2k−1).
- Simplify it to Δ=(k−2)2+40.
- Since (k−2)2≥0, Δ≥40>0 for all k.