Solveeit Logo

Question

Question: Let z be a complex number with |z| = 1. Then the maximum value of |z + 1| + |z² - z + 1| is...

Let z be a complex number with |z| = 1. Then the maximum value of |z + 1| + |z² - z + 1| is

A

3763\sqrt{\frac{7}{6}}

B

134\frac{13}{4}

C

3

D

4

Answer

134\frac{13}{4}

Explanation

Solution

We are given a complex number zz with z=1|z|=1. Let

z=eiθ.z=e^{i\theta}.

Then,

z+1=eiθ+1=(1+cosθ)2+sin2θ=2+2cosθ=2cosθ2(when 0θπ)|z+1| = |e^{i\theta}+1| = \sqrt{(1+\cos\theta)^2+\sin^2\theta} = \sqrt{2+2\cos\theta} = 2\cos\frac{\theta}{2}\quad (\text{when } 0\le \theta \le \pi)

and

z2z+1=e2iθeiθ+1.z^2-z+1 = e^{2i\theta} - e^{i\theta} + 1.

Multiply and divide by eiθe^{-i\theta} (which has absolute value 1):

z2z+1=eiθ(eiθ+eiθ1)=eiθ(2cosθ1).z^2-z+1 = e^{i\theta}\Bigl(e^{i\theta}+e^{-i\theta}-1\Bigr)= e^{i\theta}(2\cos\theta-1).

Thus,

z2z+1=2cosθ1.|z^2-z+1| = |2\cos\theta-1|.

The expression to maximize is:

F(θ)=2cosθ2+2cosθ1.F(\theta)=2\cos\frac{\theta}{2} + |2\cos\theta-1|.

Set x=cosθx=\cos\theta, so that

F(x)=2(1+x)+2x1,x[1,1].F(x)=\sqrt{2(1+x)} + |2x-1|,\quad x\in[-1,1].

Case 1: x12x\ge \frac{1}{2}
Here, 2x1=2x1|2x-1|=2x-1 so:

F(x)=2(1+x)+(2x1).F(x)=\sqrt{2(1+x)}+(2x-1).

Differentiate F(x)F(x) with respect to xx:

F(x)=12(1+x)+2.F'(x)=\frac{1}{\sqrt{2(1+x)}}+2.

Since F(x)>0F'(x)>0 for x12x\ge \frac{1}{2}, F(x)F(x) is increasing and its maximum in this region occurs at x=1x=1:

F(1)=2(2)+(21)=4+1=2+1=3.F(1)=\sqrt{2(2)}+(2-1)=\sqrt{4}+1=2+1=3.

Case 2: x<12x<\frac{1}{2}
Here, 2x1=12x|2x-1|=1-2x, so:

F(x)=2(1+x)+(12x).F(x)=\sqrt{2(1+x)}+(1-2x).

Differentiate:

F(x)=12(1+x)2.F'(x)=\frac{1}{\sqrt{2(1+x)}} - 2.

Set F(x)=0F'(x)=0:

12(1+x)=22(1+x)=122(1+x)=14.\frac{1}{\sqrt{2(1+x)}} = 2 \quad \Longrightarrow \quad \sqrt{2(1+x)} = \frac{1}{2} \quad \Longrightarrow \quad 2(1+x)=\frac{1}{4}.

Thus,

1+x=18x=78.1+x=\frac{1}{8}\quad\Rightarrow\quad x=-\frac{7}{8}.

Evaluate F(x)F(x) at x=78x=-\frac{7}{8}:

2(178)=218=14=12,\sqrt{2\left(1- \frac{7}{8}\right)} = \sqrt{2\cdot\frac{1}{8}} = \sqrt{\frac{1}{4}}= \frac{1}{2},

and

12(78)=1+74=114.1-2\left(-\frac{7}{8}\right)=1+\frac{7}{4}=\frac{11}{4}.

So,

F(78)=12+114=12+114=24+114=134=3.25.F\left(-\frac{7}{8}\right)= \frac{1}{2}+\frac{11}{4} = \frac{1}{2}+\frac{11}{4} = \frac{2}{4}+\frac{11}{4} = \frac{13}{4} = 3.25.

Thus, the maximum value is 134\frac{13}{4}.