Question
Question: Let z be a complex number with |z| = 1. Then the maximum value of |z + 1| + |z² - z + 1| is...
Let z be a complex number with |z| = 1. Then the maximum value of |z + 1| + |z² - z + 1| is

A
367
B
413
C
3
D
4
Answer
413
Explanation
Solution
We are given a complex number z with ∣z∣=1. Let
z=eiθ.Then,
∣z+1∣=∣eiθ+1∣=(1+cosθ)2+sin2θ=2+2cosθ=2cos2θ(when 0≤θ≤π)and
z2−z+1=e2iθ−eiθ+1.Multiply and divide by e−iθ (which has absolute value 1):
z2−z+1=eiθ(eiθ+e−iθ−1)=eiθ(2cosθ−1).Thus,
∣z2−z+1∣=∣2cosθ−1∣.The expression to maximize is:
F(θ)=2cos2θ+∣2cosθ−1∣.Set x=cosθ, so that
F(x)=2(1+x)+∣2x−1∣,x∈[−1,1].Case 1: x≥21
Here, ∣2x−1∣=2x−1 so:
Differentiate F(x) with respect to x:
F′(x)=2(1+x)1+2.Since F′(x)>0 for x≥21, F(x) is increasing and its maximum in this region occurs at x=1:
F(1)=2(2)+(2−1)=4+1=2+1=3.Case 2: x<21
Here, ∣2x−1∣=1−2x, so:
Differentiate:
F′(x)=2(1+x)1−2.Set F′(x)=0:
2(1+x)1=2⟹2(1+x)=21⟹2(1+x)=41.Thus,
1+x=81⇒x=−87.Evaluate F(x) at x=−87:
2(1−87)=2⋅81=41=21,and
1−2(−87)=1+47=411.So,
F(−87)=21+411=21+411=42+411=413=3.25.Thus, the maximum value is 413.