Solveeit Logo

Question

Question: Let $D_1 = \begin{vmatrix} b+c & a & b \\ c+a & c & a \\ a+b & b & c \end{vmatrix}$ and $D_2 = \beg...

Let D1=b+cabc+acaa+bbcD_1 = \begin{vmatrix} b+c & a & b \\ c+a & c & a \\ a+b & b & c \end{vmatrix} and

D2=(b+c)2a2bc(c+a)2b2ca(a+b)2c2abD_2 = \begin{vmatrix} (b+c)^2 & a^2 & bc \\ (c+a)^2 & b^2 & ca \\ (a+b)^2 & c^2 & ab \end{vmatrix}

The divisor which is common to both D1D_1 and D2D_2 is

A

(a−b)

B

(ab + bc + ca)

C

a+b+c

D

(c-a)

Answer

a+b+c, c-a

Explanation

Solution

Solution:

We want to show that both

D1=b+cabc+acaa+bbcandD2=(b+c)2a2bc(c+a)2b2ca(a+b)2c2abD_1=\begin{vmatrix} b+c & a & b \\ c+a & c & a \\ a+b & b & c \end{vmatrix}\quad\text{and}\quad D_2=\begin{vmatrix} (b+c)^2 & a^2 & bc \\ (c+a)^2 & b^2 & ca \\ (a+b)^2 & c^2 & ab \end{vmatrix}

are divisible by a factor that vanishes when either

a+b+c=0orca=0.a+b+c=0\quad\text{or}\quad c-a=0.

Checking a+b+ca+b+c:

Choose any numbers such that

a+b+c=0.a+b+c=0.

For example, take a=1,  b=2,  c=3a=1,\;b=2,\;c=-3. Then every row of each determinant is “balanced” so that direct computation shows

D1=0andD2=0.D_1=0\quad\text{and}\quad D_2=0.

Thus, the linear factor a+b+ca+b+c divides both D1D_1 and D2D_2.

Checking cac-a:

Next, set

c=a.c=a.

For any values of aa and bb, substitution c=ac=a causes two rows to become identical in each determinant (or forces their dependence), and hence

D1=0andD2=0.D_1=0\quad\text{and}\quad D_2=0.

Thus, (ca)(c-a) is also a factor of both determinants.

Testing the other options:

A similar test (for example, setting a=ba=b with a=1,  b=1,  c1a=1,\;b=1,\;c\neq1) shows that neither (ab)(a-b) nor (ab+bc+ca)(ab+bc+ca) always cause D1D_1 and D2D_2 to vanish.

Conclusion:

Both a+b+c\boxed{a+b+c} and (ca)\boxed{(c-a)} are common divisors of D1D_1 and D2D_2.