Solveeit Logo

Question

Question: Consider the ellipse $E: \frac{x^2}{6} + \frac{y^2}{3} = 1$. Let $E_1$ denote the locus of the point...

Consider the ellipse E:x26+y23=1E: \frac{x^2}{6} + \frac{y^2}{3} = 1. Let E1E_1 denote the locus of the points of intersection of a pair of perpendicular tangents to EE. A vertical line passing through the point P(h,0)P(h, 0) intersects EE and E1E_1 at QQ and RR respectively in the first quadrant. Let the tangent to the ellipse at point QQ meet x axis at the point TT. If Δ(h)\Delta(h) = area of the triangle PRTPRT, Δ1=max1h2Δ(h)\Delta_1 = \underset{1\leq h\leq 2}{max}\Delta(h) and Δ2=min1h2Δ(h)\Delta_2 = \underset{1\leq h\leq 2}{min}\Delta(h), then Δ124Δ22\Delta_1^2 - 4\Delta_2^2 equals 45. Range [44.99 to 45.01]

Answer

45

Explanation

Solution

The ellipse EE is given by x26+y23=1\frac{x^2}{6} + \frac{y^2}{3} = 1. This is of the form x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 with a2=6a^2=6 and b2=3b^2=3.

The locus of the points of intersection of a pair of perpendicular tangents to EE is the director circle E1E_1. The equation of the director circle is x2+y2=a2+b2x^2 + y^2 = a^2 + b^2.

So, E1E_1 is x2+y2=6+3=9x^2 + y^2 = 6 + 3 = 9.

A vertical line x=hx=h passes through P(h,0)P(h, 0), where 1h21 \leq h \leq 2. This line intersects EE and E1E_1 at QQ and RR respectively in the first quadrant.

For EE: h26+y23=1    y23=1h26=6h26    y2=6h22\frac{h^2}{6} + \frac{y^2}{3} = 1 \implies \frac{y^2}{3} = 1 - \frac{h^2}{6} = \frac{6-h^2}{6} \implies y^2 = \frac{6-h^2}{2}. Since QQ is in the first quadrant, yQ=6h22y_Q = \sqrt{\frac{6-h^2}{2}}. So Q=(h,6h22)Q = (h, \sqrt{\frac{6-h^2}{2}}).

For E1E_1: h2+y2=9    y2=9h2h^2 + y^2 = 9 \implies y^2 = 9-h^2. Since RR is in the first quadrant, yR=9h2y_R = \sqrt{9-h^2}. So R=(h,9h2)R = (h, \sqrt{9-h^2}).

For 1h21 \leq h \leq 2, h2[1,4]h^2 \in [1, 4]. 6h2[2,5]6-h^2 \in [2, 5], so yQ=6h22[1,5/2]y_Q = \sqrt{\frac{6-h^2}{2}} \in [1, \sqrt{5/2}]. 9h2[5,8]9-h^2 \in [5, 8], so yR=9h2[5,8]y_R = \sqrt{9-h^2} \in [\sqrt{5}, \sqrt{8}]. Since 5>5/21\sqrt{5} > \sqrt{5/2} \geq 1, we have yR>yQ>0y_R > y_Q > 0 for h[1,2]h \in [1, 2]. The points P,Q,RP, Q, R are collinear on the vertical line x=hx=h. P=(h,0)P=(h,0), Q=(h,yQ)Q=(h, y_Q), R=(h,yR)R=(h, y_R).

The tangent to the ellipse EE at Q(x0,y0)Q(x_0, y_0) is xx0a2+yy0b2=1\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1. Here (x0,y0)=(h,6h22)(x_0, y_0) = (h, \sqrt{\frac{6-h^2}{2}}), a2=6a^2=6, b2=3b^2=3. The tangent equation is xh6+y6h223=1\frac{xh}{6} + \frac{y\sqrt{\frac{6-h^2}{2}}}{3} = 1. This tangent meets the x-axis at TT. Set y=0y=0: xTh6=1    xT=6h\frac{x_T h}{6} = 1 \implies x_T = \frac{6}{h}. So T=(6h,0)T = (\frac{6}{h}, 0).

For 1h21 \leq h \leq 2, h[1,2]h \in [1, 2], so 6h[3,6]\frac{6}{h} \in [3, 6]. xT=6h3x_T = \frac{6}{h} \geq 3 and xP=h2x_P = h \leq 2. So xT>xPx_T > x_P.

Consider the triangle PRTPRT. Vertices are P(h,0)P(h, 0), R(h,9h2)R(h, \sqrt{9-h^2}), T(6h,0)T(\frac{6}{h}, 0). The base PTPT lies on the x-axis. Length of base PT=xTxP=6hhPT = |x_T - x_P| = |\frac{6}{h} - h|. Since h[1,2]h \in [1, 2], h2[1,4]h^2 \in [1, 4], 6h2[2,5]6-h^2 \in [2, 5]. 6hh=6h2h\frac{6}{h} - h = \frac{6-h^2}{h}. Since h>0h>0 and 6h22>06-h^2 \geq 2 > 0, 6hh>0\frac{6}{h} - h > 0. Length of base PT=6hhPT = \frac{6}{h} - h. The height of the triangle is the perpendicular distance from RR to the x-axis, which is yR=9h2y_R = \sqrt{9-h^2}. The area of ΔPRT\Delta PRT is Δ(h)=12×base×height=12(6hh)9h2=126h2h9h2\Delta(h) = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \left(\frac{6}{h} - h\right) \sqrt{9-h^2} = \frac{1}{2} \frac{6-h^2}{h} \sqrt{9-h^2}.

We need to find the maximum and minimum values of Δ(h)\Delta(h) for h[1,2]h \in [1, 2]. Consider Δ(h)2=14(6h2)2h2(9h2)\Delta(h)^2 = \frac{1}{4} \frac{(6-h^2)^2}{h^2} (9-h^2). Let u=h2u=h^2. Since h[1,2]h \in [1, 2], u[1,4]u \in [1, 4]. Let G(u)=14(6u)2(9u)u=14u(3612u+u2)(9u)=14u(32436u108u+12u2+9u2u3)=14u(324144u+21u2u3)=14(324u144+21uu2)G(u) = \frac{1}{4} \frac{(6-u)^2(9-u)}{u} = \frac{1}{4u}(36-12u+u^2)(9-u) = \frac{1}{4u}(324 - 36u - 108u + 12u^2 + 9u^2 - u^3) = \frac{1}{4u}(324 - 144u + 21u^2 - u^3) = \frac{1}{4}(\frac{324}{u} - 144 + 21u - u^2). To find extrema, we differentiate G(u)G(u) with respect to uu: G(u)=14(324u2+212u)=14u2(324+21u22u3)=14u2(2u321u2+324)G'(u) = \frac{1}{4}(-\frac{324}{u^2} + 21 - 2u) = \frac{1}{4u^2}(-324 + 21u^2 - 2u^3) = -\frac{1}{4u^2}(2u^3 - 21u^2 + 324). Let k(u)=2u321u2+324k(u) = 2u^3 - 21u^2 + 324. We need to check the sign of k(u)k(u) for u[1,4]u \in [1, 4]. k(u)=6u242u=6u(u7)k'(u) = 6u^2 - 42u = 6u(u-7). For u[1,4]u \in [1, 4], u>0u>0 and u7<0u-7<0, so k(u)<0k'(u) < 0. Thus, k(u)k(u) is a strictly decreasing function on [1,4][1, 4]. k(1)=2(1)321(1)2+324=221+324=305k(1) = 2(1)^3 - 21(1)^2 + 324 = 2 - 21 + 324 = 305. k(4)=2(4)321(4)2+324=2(64)21(16)+324=128336+324=116k(4) = 2(4)^3 - 21(4)^2 + 324 = 2(64) - 21(16) + 324 = 128 - 336 + 324 = 116. Since k(1)=305>0k(1)=305 > 0 and k(4)=116>0k(4)=116 > 0, and k(u)k(u) is decreasing, k(u)>0k(u) > 0 for all u[1,4]u \in [1, 4]. Therefore, G(u)=14u2k(u)<0G'(u) = -\frac{1}{4u^2} k(u) < 0 for all u[1,4]u \in [1, 4]. G(u)G(u) is a strictly decreasing function on [1,4][1, 4]. Since Δ(h)2=G(h2)\Delta(h)^2 = G(h^2), Δ(h)2\Delta(h)^2 is strictly decreasing for h[1,2]h \in [1, 2]. Since Δ(h)>0\Delta(h) > 0, Δ(h)\Delta(h) is also strictly decreasing for h[1,2]h \in [1, 2].

The maximum value of Δ(h)\Delta(h) occurs at h=1h=1: Δ1=Δ(1)=126121912=1258=5222=52\Delta_1 = \Delta(1) = \frac{1}{2} \frac{6-1^2}{1} \sqrt{9-1^2} = \frac{1}{2} \cdot 5 \cdot \sqrt{8} = \frac{5}{2} \cdot 2\sqrt{2} = 5\sqrt{2}.

The minimum value of Δ(h)\Delta(h) occurs at h=2h=2: Δ2=Δ(2)=126222922=1264294=12225=1215=52\Delta_2 = \Delta(2) = \frac{1}{2} \frac{6-2^2}{2} \sqrt{9-2^2} = \frac{1}{2} \frac{6-4}{2} \sqrt{9-4} = \frac{1}{2} \frac{2}{2} \sqrt{5} = \frac{1}{2} \cdot 1 \cdot \sqrt{5} = \frac{\sqrt{5}}{2}.

We need to calculate Δ124Δ22\Delta_1^2 - 4\Delta_2^2. Δ12=(52)2=25×2=50\Delta_1^2 = (5\sqrt{2})^2 = 25 \times 2 = 50. Δ22=(52)2=54\Delta_2^2 = (\frac{\sqrt{5}}{2})^2 = \frac{5}{4}. 4Δ22=4×54=54\Delta_2^2 = 4 \times \frac{5}{4} = 5.

Δ124Δ22=505=45\Delta_1^2 - 4\Delta_2^2 = 50 - 5 = 45.

Explanation of the solution:

  1. Identify the equation of the ellipse EE and its parameters a2a^2 and b2b^2.
  2. Determine the equation of E1E_1, the locus of points of intersection of perpendicular tangents, which is the director circle x2+y2=a2+b2x^2+y^2=a^2+b^2.
  3. Find the coordinates of points QQ and RR by intersecting the vertical line x=hx=h with EE and E1E_1 respectively, considering the first quadrant condition.
  4. Find the equation of the tangent to EE at point QQ.
  5. Find the coordinates of point TT by intersecting the tangent line with the x-axis.
  6. Identify the vertices of the triangle PRTPRT and calculate its area Δ(h)\Delta(h) using the base PTPT on the x-axis and the height as the y-coordinate of RR.
  7. Analyze the function Δ(h)\Delta(h) for h[1,2]h \in [1, 2] to find its maximum Δ1\Delta_1 and minimum Δ2\Delta_2. This is done by analyzing the square of the area function, G(u)=Δ(h)2G(u) = \Delta(h)^2 with u=h2u=h^2.
  8. Differentiate G(u)G(u) and analyze the sign of the derivative G(u)G'(u) on the interval u[1,4]u \in [1, 4].
  9. Conclude that G(u)G(u) is decreasing on [1,4][1, 4], which implies Δ(h)\Delta(h) is decreasing on [1,2][1, 2].
  10. Determine Δ1\Delta_1 as Δ(1)\Delta(1) and Δ2\Delta_2 as Δ(2)\Delta(2).
  11. Calculate Δ12\Delta_1^2 and Δ22\Delta_2^2.
  12. Compute the final value Δ124Δ22\Delta_1^2 - 4\Delta_2^2.