Solveeit Logo

Question

Question: A particle has an initial velocity of $3\hat{i}+4\hat{j}$ and an acceleration of $0.4\hat{i}+0.3\hat...

A particle has an initial velocity of 3i^+4j^3\hat{i}+4\hat{j} and an acceleration of 0.4i^+0.3j^0.4\hat{i}+0.3\hat{j}. Its speed 10s is?

A

7 units

B

8.5 units

C

10 units

D

727\sqrt{2} units

Answer

727\sqrt{2} units

Explanation

Solution

The initial velocity is v0=3i^+4j^\vec{v_0} = 3\hat{i}+4\hat{j}.

The acceleration is a=0.4i^+0.3j^\vec{a} = 0.4\hat{i}+0.3\hat{j}.

The time is t=10t = 10 s.

The final velocity v\vec{v} after time tt can be found using the equation of motion: v=v0+at\vec{v} = \vec{v_0} + \vec{a}t

Substitute the given values: v=(3i^+4j^)+(0.4i^+0.3j^)(10)\vec{v} = (3\hat{i}+4\hat{j}) + (0.4\hat{i}+0.3\hat{j})(10) v=(3i^+4j^)+(4i^+3j^)\vec{v} = (3\hat{i}+4\hat{j}) + (4\hat{i}+3\hat{j}) v=(3+4)i^+(4+3)j^\vec{v} = (3+4)\hat{i} + (4+3)\hat{j} v=7i^+7j^\vec{v} = 7\hat{i} + 7\hat{j}

The speed is the magnitude of the final velocity vector: Speed=v=72+72\text{Speed} = |\vec{v}| = \sqrt{7^2 + 7^2} Speed=49+49\text{Speed} = \sqrt{49 + 49} Speed=98\text{Speed} = \sqrt{98} Speed=49×2\text{Speed} = \sqrt{49 \times 2} Speed=72 units\text{Speed} = 7\sqrt{2} \text{ units}