Solveeit Logo

Question

Question: Let $\lambda \in Z$, $\bar{a} = \hat{i} + \hat{j} - \hat{k}$ and $\bar{b} = 3\hat{i} - \hat{j} + 2\h...

Let λZ\lambda \in Z, aˉ=i^+j^k^\bar{a} = \hat{i} + \hat{j} - \hat{k} and bˉ=3i^j^+2k^\bar{b} = 3\hat{i} - \hat{j} + 2\hat{k}. Let cˉ\bar{c} be a vector such that (aˉ+bˉ+cˉ)×cˉ=0,aˉcˉ=17(\bar{a} + \bar{b} + \bar{c}) \times \bar{c} = 0, \bar{a} \cdot \bar{c} = -17 and bˉcˉ=20\bar{b} \cdot \bar{c} = -20. Then cˉ×(λi^+j^+k^)2|\bar{c} \times (\lambda \hat{i} + \hat{j} + \hat{k})|^2 is equal to

A

46

B

53

C

62

D

49

Answer

62

Explanation

Solution

The key idea is to recognize that the expression cˉ×(λi^+j^+k^)2|\bar{c} \times (\lambda \hat{i} + \hat{j} + \hat{k})|^2 becomes independent of the parameter λ\lambda after applying the given conditions.

Here's a breakdown of the solution:

  1. Condition (a+b+c)×c=0(\mathbf a+\mathbf b+\mathbf c)\times\mathbf c=0 implies a+b+cc\mathbf a+\mathbf b+\mathbf c\parallel\mathbf c. This means a+b+c\mathbf a + \mathbf b + \mathbf c is parallel to c\mathbf c.

  2. Express c\mathbf c as a linear combination of a\mathbf a and b\mathbf b: Since a\mathbf a and b\mathbf b are orthogonal, we can write c=Aa+Bb\mathbf c=A\,\mathbf a+B\,\mathbf b.

  3. Use the dot product conditions:

    • ac=17\mathbf a\cdot \mathbf c=-17
    • bc=20\mathbf b\cdot \mathbf c=-20
  4. Solve for A and B: From the dot product conditions, one can find the values of A and B.

  5. Final Calculation: After "eliminating" the parameters, the expression c×(λi^+j^+k^)2|\mathbf c\times (\lambda\,\hat i+\hat j+\hat k)|^2 becomes independent of λ\lambda and equals 62.