Solveeit Logo

Question

Question: The x-z plane separates two media A and B of refractive index $\mu_1 = 1.5$ and $\mu_2 = 2$. A ray o...

The x-z plane separates two media A and B of refractive index μ1=1.5\mu_1 = 1.5 and μ2=2\mu_2 = 2. A ray of light-travels from A to B. Its direction in the two media, are given by unit vectors u1=ai^+bj^\vec{u_1} = a\hat{i} + b\hat{j} and u2=ci^+dj^\vec{u_2} = c\hat{i} + d\hat{j}, then (positive y-axis medium A & -ve y-axis medium B)

A

ac=43\frac{a}{c} = \frac{4}{3}

B

ac=34\frac{a}{c} = \frac{3}{4}

C

bd=43\frac{b}{d} = \frac{4}{3}

D

bd=34\frac{b}{d} = \frac{3}{4}

Answer

ac=43\frac{a}{c} = \frac{4}{3}

Explanation

Solution

The tangential component of the wave vector is continuous across the interface. The wave vector is given by k=2πμλ0u\vec{k} = \frac{2\pi \mu}{\lambda_0} \vec{u}. The interface is the x-z plane, and the normal is j^\hat{j}. The tangential component condition is k1×n^=k2×n^\vec{k_1} \times \hat{n} = \vec{k_2} \times \hat{n}.

k1×j^=(2πμ1λ0(ai^+bj^))×j^=2πμ1λ0a(i^×j^)=2πμ1λ0ak^\vec{k_1} \times \hat{j} = (\frac{2\pi \mu_1}{\lambda_0} (a\hat{i} + b\hat{j})) \times \hat{j} = \frac{2\pi \mu_1}{\lambda_0} a (\hat{i} \times \hat{j}) = \frac{2\pi \mu_1}{\lambda_0} a \hat{k} k2×j^=(2πμ2λ0(ci^+dj^))×j^=2πμ2λ0c(i^×j^)=2πμ2λ0ck^\vec{k_2} \times \hat{j} = (\frac{2\pi \mu_2}{\lambda_0} (c\hat{i} + d\hat{j})) \times \hat{j} = \frac{2\pi \mu_2}{\lambda_0} c (\hat{i} \times \hat{j}) = \frac{2\pi \mu_2}{\lambda_0} c \hat{k}

Equating these: 2πμ1λ0a=2πμ2λ0c\frac{2\pi \mu_1}{\lambda_0} a = \frac{2\pi \mu_2}{\lambda_0} c μ1a=μ2c\mu_1 a = \mu_2 c ac=μ2μ1=21.5=43\frac{a}{c} = \frac{\mu_2}{\mu_1} = \frac{2}{1.5} = \frac{4}{3}