Question
Question: The integral $\int \frac{2x^{12}+5x^9}{(x^5+x^3+1)^3} dx$ is equal to...
The integral ∫(x5+x3+1)32x12+5x9dx is equal to

2(x5+x3+1)2−x10+C
(x5+x3+1)2−x5+C
2(x5+x3+1)2x10+C
2(x5+x3+1)2x5+C
2(x5+x3+1)2x10+C
Solution
To evaluate the integral I=∫(x5+x3+1)32x12+5x9dx, we can use a substitution method.
Step 1: Manipulate the integrand
The denominator is (x5+x3+1)3. A common strategy for such integrals is to divide both the numerator and the denominator by the highest power of x inside the parenthesis, raised to the power of the exponent outside. In this case, the highest power of x inside is x5, and the exponent outside is 3. So, we divide by (x5)3=x15.
Divide the numerator by x15: 2x12+5x9=x152x12+x155x9=2x−3+5x−6
Divide the denominator by x15: (x5+x3+1)3=(x5x5+x3+1)3=(1+x5x3+x51)3=(1+x−2+x−5)3
So, the integral becomes: I=∫(1+x−2+x−5)32x−3+5x−6dx
Step 2: Perform Substitution
Let u=1+x−2+x−5. Now, find the differential du: du=dxd(1+x−2+x−5)dx du=(0+(−2)x−2−1+(−5)x−5−1)dx du=(−2x−3−5x−6)dx du=−(2x−3+5x−6)dx
From this, we can see that (2x−3+5x−6)dx=−du.
Step 3: Substitute into the integral and evaluate
Substitute u and du into the modified integral: I=∫u3−du I=−∫u−3du
Now, integrate using the power rule ∫yndy=n+1yn+1+C: I=−(−3+1u−3+1)+C I=−(−2u−2)+C I=2u21+C
Step 4: Substitute back for x
Replace u with 1+x−2+x−5: I=2(1+x−2+x−5)21+C
To match the options, convert 1+x−2+x−5 back to a common denominator form: 1+x−2+x−5=1+x21+x51=x5x5+x5x3+x51=x5x5+x3+1
Substitute this back into the expression for I: I=2(x5x5+x3+1)21+C I=2(x5)2(x5+x3+1)21+C I=2x10(x5+x3+1)21+C I=2(x5+x3+1)2x10+C
Comparing this result with the given options, it matches option (3).