Solveeit Logo

Question

Question: The integral $\int \frac{2x^{12}+5x^9}{(x^5+x^3+1)^3} dx$ is equal to...

The integral 2x12+5x9(x5+x3+1)3dx\int \frac{2x^{12}+5x^9}{(x^5+x^3+1)^3} dx is equal to

A

x102(x5+x3+1)2+C\frac{-x^{10}}{2(x^5+x^3+1)^2} + C

B

x5(x5+x3+1)2+C\frac{-x^5}{(x^5+x^3+1)^2} + C

C

x102(x5+x3+1)2+C\frac{x^{10}}{2(x^5+x^3+1)^2} + C

D

x52(x5+x3+1)2+C\frac{x^5}{2(x^5+x^3+1)^2} + C

Answer

x102(x5+x3+1)2+C\frac{x^{10}}{2(x^5+x^3+1)^2} + C

Explanation

Solution

To evaluate the integral I=2x12+5x9(x5+x3+1)3dxI = \int \frac{2x^{12}+5x^9}{(x^5+x^3+1)^3} dx, we can use a substitution method.

Step 1: Manipulate the integrand

The denominator is (x5+x3+1)3(x^5+x^3+1)^3. A common strategy for such integrals is to divide both the numerator and the denominator by the highest power of xx inside the parenthesis, raised to the power of the exponent outside. In this case, the highest power of xx inside is x5x^5, and the exponent outside is 33. So, we divide by (x5)3=x15(x^5)^3 = x^{15}.

Divide the numerator by x15x^{15}: 2x12+5x9=2x12x15+5x9x15=2x3+5x62x^{12}+5x^9 = \frac{2x^{12}}{x^{15}} + \frac{5x^9}{x^{15}} = 2x^{-3} + 5x^{-6}

Divide the denominator by x15x^{15}: (x5+x3+1)3=(x5+x3+1x5)3=(1+x3x5+1x5)3=(1+x2+x5)3(x^5+x^3+1)^3 = \left(\frac{x^5+x^3+1}{x^5}\right)^3 = \left(1+\frac{x^3}{x^5}+\frac{1}{x^5}\right)^3 = (1+x^{-2}+x^{-5})^3

So, the integral becomes: I=2x3+5x6(1+x2+x5)3dxI = \int \frac{2x^{-3}+5x^{-6}}{(1+x^{-2}+x^{-5})^3} dx

Step 2: Perform Substitution

Let u=1+x2+x5u = 1+x^{-2}+x^{-5}. Now, find the differential dudu: du=ddx(1+x2+x5)dxdu = \frac{d}{dx}(1+x^{-2}+x^{-5}) dx du=(0+(2)x21+(5)x51)dxdu = (0 + (-2)x^{-2-1} + (-5)x^{-5-1}) dx du=(2x35x6)dxdu = (-2x^{-3} - 5x^{-6}) dx du=(2x3+5x6)dxdu = -(2x^{-3} + 5x^{-6}) dx

From this, we can see that (2x3+5x6)dx=du(2x^{-3} + 5x^{-6}) dx = -du.

Step 3: Substitute into the integral and evaluate

Substitute uu and dudu into the modified integral: I=duu3I = \int \frac{-du}{u^3} I=u3duI = -\int u^{-3} du

Now, integrate using the power rule yndy=yn+1n+1+C\int y^n dy = \frac{y^{n+1}}{n+1} + C: I=(u3+13+1)+CI = - \left( \frac{u^{-3+1}}{-3+1} \right) + C I=(u22)+CI = - \left( \frac{u^{-2}}{-2} \right) + C I=12u2+CI = \frac{1}{2u^2} + C

Step 4: Substitute back for x

Replace uu with 1+x2+x51+x^{-2}+x^{-5}: I=12(1+x2+x5)2+CI = \frac{1}{2(1+x^{-2}+x^{-5})^2} + C

To match the options, convert 1+x2+x51+x^{-2}+x^{-5} back to a common denominator form: 1+x2+x5=1+1x2+1x5=x5x5+x3x5+1x5=x5+x3+1x51+x^{-2}+x^{-5} = 1 + \frac{1}{x^2} + \frac{1}{x^5} = \frac{x^5}{x^5} + \frac{x^3}{x^5} + \frac{1}{x^5} = \frac{x^5+x^3+1}{x^5}

Substitute this back into the expression for II: I=12(x5+x3+1x5)2+CI = \frac{1}{2 \left( \frac{x^5+x^3+1}{x^5} \right)^2} + C I=12(x5+x3+1)2(x5)2+CI = \frac{1}{2 \frac{(x^5+x^3+1)^2}{(x^5)^2}} + C I=12(x5+x3+1)2x10+CI = \frac{1}{2 \frac{(x^5+x^3+1)^2}{x^{10}}} + C I=x102(x5+x3+1)2+CI = \frac{x^{10}}{2(x^5+x^3+1)^2} + C

Comparing this result with the given options, it matches option (3).