Solveeit Logo

Question

Question: Let $|X|$ denotes the cardinal number of set $X$, and $\sum X$ denote the sum of all the elements of...

Let X|X| denotes the cardinal number of set XX, and X\sum X denote the sum of all the elements of a finite set XX. If

A={x[π,2π]f(x)=max{aZ:a3+4sinx},f(x)=D.N.E.},A = \{x \in [\pi, 2\pi]|f(x) = max\{a \in \mathbb{Z} : a \leq 3 + 4 \sin x\}, f'(x) = D.N.E.\},

B={x[2,)f(x)=limn4x+x2n+1x2nn,f(x)=D.N.E.},B = \{x \in [2, \infty)|f(x) = \lim_{n \to \infty} \sqrt[n]{4^x + x^{2n} + \frac{1}{x^{2n}}}, f'(x) = D.N.E.\},

and A=kπ\sum A = k\pi, then k+Bk + |B| is equal to

Answer

13.5

Explanation

Solution

The problem asks for the value of k+Bk + |B|, where kk is related to the sum of elements in set AA, and B|B| is the cardinal number of set BB.

First, let's analyze set AA: A={x[π,2π]f(x)=max{aZ:a3+4sinx},f(x)=D.N.E.}A = \{x \in [\pi, 2\pi]|f(x) = max\{a \in \mathbb{Z} : a \leq 3 + 4 \sin x\}, f'(x) = D.N.E.\}

The function f(x)f(x) is given by f(x)=3+4sinxf(x) = \lfloor 3 + 4 \sin x \rfloor. The derivative f(x)f'(x) does not exist when the argument of the greatest integer function, 3+4sinx3 + 4 \sin x, is an integer.

Let 3+4sinx=m3 + 4 \sin x = m, where mZm \in \mathbb{Z}. This implies sinx=m34\sin x = \frac{m-3}{4}.

Since 1sinx1-1 \leq \sin x \leq 1, we have 1m341-1 \leq \frac{m-3}{4} \leq 1, which simplifies to 4m34-4 \leq m-3 \leq 4, or 1m7-1 \leq m \leq 7.

So, mm can be any integer from -1 to 7. The possible values of sinx\sin x are 14,04,14,24,34,44,54,64,74\frac{-1}{4}, \frac{0}{4}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{4}{4}, \frac{5}{4}, \frac{6}{4}, \frac{7}{4}. Wait, the denominator is 4, so the possible values are 134=1,034=3/4,134=1/2,234=1/4,334=0,434=1/4,534=1/2,634=3/4,734=1\frac{-1-3}{4} = -1, \frac{0-3}{4} = -3/4, \frac{1-3}{4} = -1/2, \frac{2-3}{4} = -1/4, \frac{3-3}{4} = 0, \frac{4-3}{4} = 1/4, \frac{5-3}{4} = 1/2, \frac{6-3}{4} = 3/4, \frac{7-3}{4} = 1.

We need to find the values of x[π,2π]x \in [\pi, 2\pi] such that sinx\sin x takes these values. In the interval [π,2π][\pi, 2\pi], sinx0\sin x \leq 0. So we consider sinx{1,3/4,1/2,1/4,0}\sin x \in \{-1, -3/4, -1/2, -1/4, 0\}.

  1. sinx=1\sin x = -1: x=3π2x = \frac{3\pi}{2} in [π,2π][\pi, 2\pi].
  2. sinx=3/4\sin x = -3/4: Let α=arcsin(3/4)\alpha = \arcsin(3/4), where α(0,π/2)\alpha \in (0, \pi/2). The values of xx in [π,2π][\pi, 2\pi] are π+α\pi + \alpha and 2πα2\pi - \alpha. So x=π+arcsin(3/4)x = \pi + \arcsin(3/4) and x=2πarcsin(3/4)x = 2\pi - \arcsin(3/4).
  3. sinx=1/2\sin x = -1/2: The values of xx in [π,2π][\pi, 2\pi] are π+π6=7π6\pi + \frac{\pi}{6} = \frac{7\pi}{6} and 2ππ6=11π62\pi - \frac{\pi}{6} = \frac{11\pi}{6}.
  4. sinx=1/4\sin x = -1/4: Let β=arcsin(1/4)\beta = \arcsin(1/4), where β(0,π/2)\beta \in (0, \pi/2). The values of xx in [π,2π][\pi, 2\pi] are π+β\pi + \beta and 2πβ2\pi - \beta. So x=π+arcsin(1/4)x = \pi + \arcsin(1/4) and x=2πarcsin(1/4)x = 2\pi - \arcsin(1/4).
  5. sinx=0\sin x = 0: The values of xx in [π,2π][\pi, 2\pi] are π\pi and 2π2\pi.

The set AA consists of all these distinct values: A={3π2,π+arcsin(34),2πarcsin(34),7π6,11π6,π+arcsin(14),2πarcsin(14),π,2π}A = \{\frac{3\pi}{2}, \pi + \arcsin(\frac{3}{4}), 2\pi - \arcsin(\frac{3}{4}), \frac{7\pi}{6}, \frac{11\pi}{6}, \pi + \arcsin(\frac{1}{4}), 2\pi - \arcsin(\frac{1}{4}), \pi, 2\pi\}. All these 9 values are distinct and lie within the interval [π,2π][\pi, 2\pi].

The sum of elements in AA, A\sum A: A=3π2+(π+arcsin(34))+(2πarcsin(34))+7π6+11π6+(π+arcsin(14))+(2πarcsin(14))+π+2π\sum A = \frac{3\pi}{2} + (\pi + \arcsin(\frac{3}{4})) + (2\pi - \arcsin(\frac{3}{4})) + \frac{7\pi}{6} + \frac{11\pi}{6} + (\pi + \arcsin(\frac{1}{4})) + (2\pi - \arcsin(\frac{1}{4})) + \pi + 2\pi. Using the property (π+θ)+(2πθ)=3π(\pi + \theta) + (2\pi - \theta) = 3\pi: (π+arcsin(3/4))+(2πarcsin(3/4))=3π(\pi + \arcsin(3/4)) + (2\pi - \arcsin(3/4)) = 3\pi. (π+arcsin(1/4))+(2πarcsin(1/4))=3π(\pi + \arcsin(1/4)) + (2\pi - \arcsin(1/4)) = 3\pi. A=3π2+3π+7π6+11π6+3π+π+2π\sum A = \frac{3\pi}{2} + 3\pi + \frac{7\pi}{6} + \frac{11\pi}{6} + 3\pi + \pi + 2\pi. A=3π2+3π+18π6+3π+π+2π\sum A = \frac{3\pi}{2} + 3\pi + \frac{18\pi}{6} + 3\pi + \pi + 2\pi. A=3π2+3π+3π+3π+π+2π\sum A = \frac{3\pi}{2} + 3\pi + 3\pi + 3\pi + \pi + 2\pi. A=3π2+12π=3π+24π2=27π2\sum A = \frac{3\pi}{2} + 12\pi = \frac{3\pi + 24\pi}{2} = \frac{27\pi}{2}. We are given A=kπ\sum A = k\pi, so kπ=27π2k\pi = \frac{27\pi}{2}, which gives k=272k = \frac{27}{2}.

Next, let's analyze set BB: B={x[2,)f(x)=limn4x+x2n+1x2nn,f(x)=D.N.E.}B = \{x \in [2, \infty)|f(x) = \lim_{n \to \infty} \sqrt[n]{4^x + x^{2n} + \frac{1}{x^{2n}}}, f'(x) = D.N.E.\} Let g(x)=limn4x+x2n+1x2nng(x) = \lim_{n \to \infty} \sqrt[n]{4^x + x^{2n} + \frac{1}{x^{2n}}}. For x[2,)x \in [2, \infty), we have x2x \geq 2, so x24x^2 \geq 4. As nn \to \infty, x2n=(x2)nx^{2n} = (x^2)^n grows much faster than 4x4^x and x2n=(x2)n=(1/x2)nx^{-2n} = (x^{-2})^n = (1/x^2)^n. We can write g(x)=limnx2n(4xx2n+1+1x4n)n=limnx24xx2n+1+1x4nng(x) = \lim_{n \to \infty} \sqrt[n]{x^{2n} \left( \frac{4^x}{x^{2n}} + 1 + \frac{1}{x^{4n}} \right)} = \lim_{n \to \infty} x^2 \sqrt[n]{\frac{4^x}{x^{2n}} + 1 + \frac{1}{x^{4n}}}. For x2x \geq 2, 4xx2n=(4x/n)n(x2)n0\frac{4^x}{x^{2n}} = \frac{(4^{x/n})^n}{(x^2)^n} \to 0 as nn \to \infty since x24x^2 \geq 4 and 4x/n14^{x/n} \to 1. Also, 1x4n0\frac{1}{x^{4n}} \to 0 as nn \to \infty for x2x \geq 2. So, g(x)=x2limn0+1+0n=x21=x2g(x) = x^2 \lim_{n \to \infty} \sqrt[n]{0 + 1 + 0} = x^2 \cdot 1 = x^2. Thus, f(x)=x2f(x) = x^2 for x[2,)x \in [2, \infty). The derivative of f(x)=x2f(x) = x^2 is f(x)=2xf'(x) = 2x. The derivative f(x)=2xf'(x) = 2x exists for all x[2,)x \in [2, \infty). The set BB contains values of x[2,)x \in [2, \infty) where f(x)f'(x) does not exist. Since f(x)f'(x) exists for all x[2,)x \in [2, \infty), there are no such values of xx. Therefore, set BB is the empty set, B=B = \emptyset. The cardinal number of set BB is B=0|B| = 0.

We need to find k+Bk + |B|. k+B=272+0=272k + |B| = \frac{27}{2} + 0 = \frac{27}{2}.

The final answer is 272\frac{27}{2}.