Solveeit Logo

Question

Question: Let $L_1$ and $L_2$ denote the lines $\vec{r_1} = -9\hat{i}+7\hat{j}+6\hat{k}+\lambda(\hat{i}-\hat{j...

Let L1L_1 and L2L_2 denote the lines r1=9i^+7j^+6k^+λ(i^j^),λR\vec{r_1} = -9\hat{i}+7\hat{j}+6\hat{k}+\lambda(\hat{i}-\hat{j}), \lambda \in \mathbb{R} and r2=7i^+3j^+4k^+μ(i^+3k^),μR\vec{r_2} = 7\hat{i}+3\hat{j}+4\hat{k}+\mu(\hat{i}+3\hat{k}), \mu \in \mathbb{R}

Let F\mathcal{F} be the family of all circles that has a point on L1L_1 as well as a point on L2L_2. Let C be the circle with radius r that has the smallest radius among the circles in F\mathcal{F}, then the value of r2r^2 is _______.

Answer

19

Explanation

Solution

Let L1L_1 be the line r1=a1+λb1\vec{r_1} = \vec{a_1} + \lambda\vec{b_1} and L2L_2 be the line r2=a2+μb2\vec{r_2} = \vec{a_2} + \mu\vec{b_2}. From the given equations: a1=9i^+7j^+6k^\vec{a_1} = -9\hat{i}+7\hat{j}+6\hat{k} and b1=i^j^\vec{b_1} = \hat{i}-\hat{j}. a2=7i^+3j^+4k^\vec{a_2} = 7\hat{i}+3\hat{j}+4\hat{k} and b2=i^+3k^\vec{b_2} = \hat{i}+3\hat{k}.

Let CC be a circle in the family F\mathcal{F}. By definition, CC must contain at least one point from L1L_1 and at least one point from L2L_2. Let PCL1P \in C \cap L_1 and QCL2Q \in C \cap L_2. The distance between any two points on a circle is less than or equal to its diameter. If rr is the radius of CC, its diameter is 2r2r. Thus, PQ2r|PQ| \le 2r. Since PL1P \in L_1 and QL2Q \in L_2, the distance PQ|PQ| is greater than or equal to the shortest distance between the lines L1L_1 and L2L_2. Let dmind_{min} be the shortest distance between L1L_1 and L2L_2. So, dminPQd_{min} \le |PQ|. Combining the inequalities, we have dminPQ2rd_{min} \le |PQ| \le 2r, which implies dmin2rd_{min} \le 2r, or rdmin/2r \ge d_{min}/2. This shows that the radius of any circle in F\mathcal{F} must be at least dmin/2d_{min}/2. The smallest possible radius for a circle in F\mathcal{F} is dmin/2d_{min}/2.

To confirm that a circle with this radius exists in F\mathcal{F}, let P0P_0 be the point on L1L_1 and Q0Q_0 be the point on L2L_2 such that P0Q0=dmin|P_0Q_0| = d_{min}. Consider the circle with P0Q0P_0Q_0 as its diameter. The center of this circle is the midpoint of P0Q0P_0Q_0, and its radius is P0Q0/2=dmin/2|P_0Q_0|/2 = d_{min}/2. This circle passes through P0L1P_0 \in L_1 and Q0L2Q_0 \in L_2, so it belongs to the family F\mathcal{F}. Its radius is dmin/2d_{min}/2. Thus, the circle with the smallest radius in F\mathcal{F} has radius r=dmin/2r = d_{min}/2.

We need to calculate dmind_{min}, the shortest distance between the skew lines L1L_1 and L2L_2. The formula for the shortest distance is dmin=(a2a1)(b1×b2)b1×b2d_{min} = \frac{|(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})|}{||\vec{b_1} \times \vec{b_2}||}.

First, calculate a2a1\vec{a_2} - \vec{a_1}: a2a1=(7i^+3j^+4k^)(9i^+7j^+6k^)=(7(9))i^+(37)j^+(46)k^=16i^4j^2k^\vec{a_2} - \vec{a_1} = (7\hat{i}+3\hat{j}+4\hat{k}) - (-9\hat{i}+7\hat{j}+6\hat{k}) = (7 - (-9))\hat{i} + (3 - 7)\hat{j} + (4 - 6)\hat{k} = 16\hat{i} - 4\hat{j} - 2\hat{k}.

Next, calculate b1×b2\vec{b_1} \times \vec{b_2}: b1×b2=(i^j^)×(i^+3k^)=i^j^k^110103=i^((1)(3)(0)(0))j^((1)(3)(0)(1))+k^((1)(0)(1)(1))\vec{b_1} \times \vec{b_2} = (\hat{i}-\hat{j}) \times (\hat{i}+3\hat{k}) = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\1 & -1 & 0 \\1 & 0 & 3\end{vmatrix} = \hat{i}((-1)(3) - (0)(0)) - \hat{j}((1)(3) - (0)(1)) + \hat{k}((1)(0) - (-1)(1)) =3i^3j^+k^= -3\hat{i} - 3\hat{j} + \hat{k}.

Now, calculate the dot product (a2a1)(b1×b2)(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2}): (a2a1)(b1×b2)=(16i^4j^2k^)(3i^3j^+k^)=(16)(3)+(4)(3)+(2)(1)=48+122=38(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2}) = (16\hat{i} - 4\hat{j} - 2\hat{k}) \cdot (-3\hat{i} - 3\hat{j} + \hat{k}) = (16)(-3) + (-4)(-3) + (-2)(1) = -48 + 12 - 2 = -38.

Calculate the magnitude of b1×b2\vec{b_1} \times \vec{b_2}: b1×b2=3i^3j^+k^=(3)2+(3)2+(1)2=9+9+1=19||\vec{b_1} \times \vec{b_2}|| = ||-3\hat{i} - 3\hat{j} + \hat{k}|| = \sqrt{(-3)^2 + (-3)^2 + (1)^2} = \sqrt{9 + 9 + 1} = \sqrt{19}.

Now, calculate the shortest distance dmind_{min}: dmin=3819=3819=2×1919=219d_{min} = \frac{|-38|}{\sqrt{19}} = \frac{38}{\sqrt{19}} = \frac{2 \times 19}{\sqrt{19}} = 2\sqrt{19}.

The radius of the smallest circle is r=dmin/2r = d_{min}/2: r=2192=19r = \frac{2\sqrt{19}}{2} = \sqrt{19}.

The question asks for the value of r2r^2. r2=(19)2=19r^2 = (\sqrt{19})^2 = 19.

The final answer is 19.

Explanation of the solution:

The smallest circle having a point on line L1L_1 and a point on line L2L_2 must have its diameter equal to the shortest distance between the two lines. This is because for any circle in the family, there exist points PCL1P \in C \cap L_1 and QCL2Q \in C \cap L_2. The distance PQ|PQ| is less than or equal to the diameter of the circle, 2r2r. Since PL1P \in L_1 and QL2Q \in L_2, PQ|PQ| is always greater than or equal to the shortest distance between the lines, dmind_{min}. Thus, dminPQ2rd_{min} \le |PQ| \le 2r, which implies rdmin/2r \ge d_{min}/2. The minimum radius is dmin/2d_{min}/2. We calculate the shortest distance dmind_{min} between the skew lines L1L_1 and L2L_2 using the formula dmin=(a2a1)(b1×b2)b1×b2d_{min} = \frac{|(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})|}{||\vec{b_1} \times \vec{b_2}||}. We find a1=9i^+7j^+6k^\vec{a_1} = -9\hat{i}+7\hat{j}+6\hat{k}, b1=i^j^\vec{b_1} = \hat{i}-\hat{j}, a2=7i^+3j^+4k^\vec{a_2} = 7\hat{i}+3\hat{j}+4\hat{k}, b2=i^+3k^\vec{b_2} = \hat{i}+3\hat{k}. a2a1=16i^4j^2k^\vec{a_2} - \vec{a_1} = 16\hat{i} - 4\hat{j} - 2\hat{k}. b1×b2=3i^3j^+k^\vec{b_1} \times \vec{b_2} = -3\hat{i} - 3\hat{j} + \hat{k}. (a2a1)(b1×b2)=(16)(3)+(4)(3)+(2)(1)=48+122=38(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2}) = (16)(-3) + (-4)(-3) + (-2)(1) = -48 + 12 - 2 = -38. b1×b2=(3)2+(3)2+12=9+9+1=19||\vec{b_1} \times \vec{b_2}|| = \sqrt{(-3)^2 + (-3)^2 + 1^2} = \sqrt{9+9+1} = \sqrt{19}. dmin=3819=3819=219d_{min} = \frac{|-38|}{\sqrt{19}} = \frac{38}{\sqrt{19}} = 2\sqrt{19}. The radius of the smallest circle is r=dmin/2=2192=19r = d_{min}/2 = \frac{2\sqrt{19}}{2} = \sqrt{19}. The value of r2r^2 is (19)2=19(\sqrt{19})^2 = 19.