Solveeit Logo

Question

Question: If $\overline{a}$ and $\overline{b}$ are two unit vectors such that $5\overline{a}+4\overline{b}$ an...

If a\overline{a} and b\overline{b} are two unit vectors such that 5a+4b5\overline{a}+4\overline{b} and a2b\overline{a}-2\overline{b} are perpendicular to each other, then the angle between a\overline{a} and b\overline{b} is

A

π3\frac{\pi}{3}

B

cos1(23)cos^{-1}(\frac{2}{3})

C

2π3\frac{2\pi}{3}

D

cos1(13)cos^{-1}(\frac{1}{3})

Answer

2π3\frac{2\pi}{3}

Explanation

Solution

Given that (5a+4b)(a2b)=0,(5\mathbf{a}+4\mathbf{b})\cdot (\mathbf{a}-2\mathbf{b})=0, expanding the dot product using aa=1, bb=1,\mathbf{a}\cdot\mathbf{a}=1,\ \mathbf{b}\cdot\mathbf{b}=1, and ab=cosθ\mathbf{a}\cdot\mathbf{b}=\cos\theta: 5(aa)10(ab)+4(ba)8(bb)=510cosθ+4cosθ8=0.5(\mathbf{a}\cdot\mathbf{a}) -10(\mathbf{a}\cdot\mathbf{b}) + 4(\mathbf{b}\cdot\mathbf{a}) -8(\mathbf{b}\cdot\mathbf{b}) = 5 -10\cos\theta + 4\cos\theta -8=0. This simplifies to: 36cosθ=0cosθ=12.-3 -6\cos\theta = 0 \quad \Longrightarrow \quad \cos\theta = -\frac{1}{2}. Thus, θ=cos1(12)=2π3.\theta = \cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}.